Volume 34 Issue 12
Nov.  2022
Turn off MathJax
Article Contents
Zhang Tiankui, Shan Lianqiang, Yu Minghai, et al. Source-coded radiography technique with high spatial-resolution for X-ray source driven by ps-laser[J]. High Power Laser and Particle Beams, 2022, 34: 122001. doi: 10.11884/HPLPB202234.220186
Citation: Zhang Tiankui, Shan Lianqiang, Yu Minghai, et al. Source-coded radiography technique with high spatial-resolution for X-ray source driven by ps-laser[J]. High Power Laser and Particle Beams, 2022, 34: 122001. doi: 10.11884/HPLPB202234.220186

Source-coded radiography technique with high spatial-resolution for X-ray source driven by ps-laser

doi: 10.11884/HPLPB202234.220186
  • Received Date: 2022-06-06
  • Rev Recd Date: 2022-09-26
  • Available Online: 2022-11-02
  • Publish Date: 2022-11-02
  • To measure the areal density distribution of cold fuel at the maximum compression time during the stagnation phase of implosion in inertial confinement fusion (ICF), we have established the ps-laser driven high-energy X-ray radiography using source-coded technique. This paper describes the design and employment of the object including character-object and pinhole array. Based on the object, the source distribution and the object radiography was obtained at the same shot and same angle of view, and therefore the source-coded radiography of ps-laser driven X-ray has been established in experiments for the first time. From the experimental work on Xingguang-III facility, the spatial resolution of the inversion image with W wire-array target is 5.4 μm±0.7 μm. The efficiency of converting laser energy to high-energy bremsstrahlung (50−200 keV) is 5.4×10−4 in W wire-array target and 4.8×10−4 in Au single-wire target, respectively. It is possible that the the source-coded radiography of ps-laser driven X-ray in this work could account for overcoming the balance between spatial resolution and brightness in traditional X-ray backlight by ps-laser. The source-coded radiography provides an important method for ICF implosion backlight to get high resolution high signal-to-noise ratio images under the strong background.
  • loading
  • [1]
    德雷克. 高能量密度物理: 基础、惯性约束聚变和实验天体物理学[M]. 孙承纬, 译. 北京: 国防工业出版社, 2013: 1-12

    Drake R P. High-energy-density physics: fundamentals, inertial fusion, and experimental astrophysics[M]. Sun Chengwei, trans. Beijing: National Defense Industry Press, 2013: 1-17
    [2]
    核物理与等离子体物理发展战略研究编写组, 核物理与等离子体物理——学科前沿及发展战略[M]. 北京: 科学出版社, 2017: 3-23

    Development Strategy Research Preparation Group of Nuclear Physics and Plasma Physics. Nuclear physics and plasma physics: discipline frontier and development strategy[M]. Beijing: Science Press, 2017: 3-23
    [3]
    Zhang Jihua, Li Yutong, Chen L M, et al. Studies of high energy density physics and laboratory astrophysics driven by intense lasers[J]. Journal of Physics: Conference Series, 2016, 717: 012004. doi: 10.1088/1742-6596/717/1/012004
    [4]
    Casner A, Rigon G, Albertazzi B, et al. Turbulent hydrodynamics experiments in high energy density plasmas: scientific case and preliminary results of the TurboHEDP project[J]. High Power Laser Science and Engineering, 2018, 6: e44. doi: 10.1017/hpl.2018.34
    [5]
    Kuranz C C, Park H S, Remington B A, et al. Astrophysically relevant radiation hydrodynamics experiment at the National Ignition Facility[J]. Astrophysics and Space Science, 2011, 336(1): 207-211. doi: 10.1007/s10509-011-0679-9
    [6]
    Remington B A, Drake R P, Ryutov D D. Experimental astrophysics with high power lasers and Z pinches[J]. Reviews of Modern Physics, 2006, 78(3): 755-807. doi: 10.1103/RevModPhys.78.755
    [7]
    Remington B A, Arnett D, Paul R, et al. Modeling astrophysical phenomena in the laboratory with intense lasers[J]. Science, 1999, 284(5419): 1488-1493. doi: 10.1126/science.284.5419.1488
    [8]
    Clark D S, Weber C R, Milovich J L, et al. Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions[J]. Physics of Plasmas, 2019, 26: 050601. doi: 10.1063/1.5091449
    [9]
    Clark D S, Marinak M M, Weber C R, et al. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign[J]. Physics of Plasmas, 2015, 22: 022703. doi: 10.1063/1.4906897
    [10]
    Loomis E N, Braun D, Batha S H, et al. Areal density evolution of isolated surface perturbations at the onset of X-ray ablation Richtmyer-Meshkov growth[J]. Physics of Plasmas, 2011, 18: 092702. doi: 10.1063/1.3632083
    [11]
    Rinderknecht H G, Rosenberg M J, Zylstra A B, et al. Using multiple secondary fusion products to evaluate fuel ρR, electron temperature, and mix in deuterium-filled implosions at the NIF[J]. Physics of Plasmas, 2015, 22: 082709. doi: 10.1063/1.4928382
    [12]
    Tommasini R, Landen O , Hopkins L B, et al. Time-resolved fuel density profiles of the stagnation phase of indirect-drive inertial confinement implosions[J]. Physical Review Letters, 2020, 125: 155003. doi: 10.1103/PhysRevLett.125.155003
    [13]
    Borm B, Khaghani D, Neumayer P. Properties of laser-driven hard X-ray sources over a wide range of laser intensities[J]. Physics of Plasmas, 2019, 26: 023109. doi: 10.1063/1.5081800
    [14]
    Armstrong C D, Brenner C M, Zemaityte E, et al. Bremsstrahlung emission profile from intense laser-solid interactions as a function of laser focal spot size[J]. Plasma Physics and Controlled Fusion, 2019, 61: 034001. doi: 10.1088/1361-6587/aaf596
    [15]
    Jarrott L C, Kemp A J, Divol L, et al. Kα and bremsstrahlung X-ray radiation backlighter sources from short pulse laser driven silver targets as a function of laser pre-pulse energy[J]. Physics of Plasmas, 2014, 21: 031211. doi: 10.1063/1.4865230
    [16]
    Wang Jian, Zhao Zongqing, He Weihua, et al. Radiography of a Kα X-ray source generated through ultrahigh picosecond laser–nanostructure target interaction[J]. Chinese Optics Letters, 2015, 13: 031001. doi: 10.3788/COL201513.031001
    [17]
    Vaughan K, Moore A S, Smalyuk V, et al. High-resolution 22–52 keV backlighter sources and application to X-ray radiography[J]. High Energy Density Physics, 2013, 9(3): 635-641. doi: 10.1016/j.hedp.2013.05.006
    [18]
    Xiong Jun, Dong Jiaqin, Jia Guo, et al. Optimization of 4.7-keV X-ray titanium sources driven by 100-ps laser pulses[J]. Chinese Physics B, 2013, 22: 065201. doi: 10.1088/1674-1056/22/6/065201
    [19]
    Le Pape S, Divol L, Macphee A, et al. Optimization of high energy X ray production through laser plasma interaction[J]. High Energy Density Physics, 2019, 31: 13-18. doi: 10.1016/j.hedp.2019.01.002
    [20]
    Chen Hui, Hermann M R, Kalantar D H, et al. High-energy (>70 keV) X-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility[J]. Physics of Plasmas, 2017, 24: 033112. doi: 10.1063/1.4978493
    [21]
    Tommasini R, MacPhee A, Hey D, et al. Development of backlighting sources for a Compton radiography diagnostic of inertial confinement fusion targets (invited)[J]. Review of Scientific Instruments, 2008, 79: 10E901. doi: 10.1063/1.2953593
    [22]
    Tommasini R, Hatchett S P, Hey D S, et al. Development of Compton radiography of inertial confinement fusion implosions[J]. Physics of Plasmas, 2011, 18: 056309. doi: 10.1063/1.3567499
    [23]
    Hall G N, Izumi N, Tommasini R, et al. AXIS: an instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF[J]. Review of Scientific Instruments, 2014, 85: 11D624. doi: 10.1063/1.4892558
    [24]
    Tommasini R, Bailey C, Bradley D K, et al. Short pulse, high resolution, backlighters for point projection high-energy radiography at the National Ignition Facility[J]. Physics of Plasmas, 2017, 24: 053104. doi: 10.1063/1.4983137
    [25]
    Tian Chao, Yu Minghai, Shan Lianqiang, et al. Radiography of direct drive double shell targets with hard X-rays generated by a short pulse laser[J]. Nuclear Fusion, 2019, 59: 046012. doi: 10.1088/1741-4326/aafe30
    [26]
    Theobald W, Solodov A A, Stoeckl C, et al. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion[J]. Nature Communications, 2014, 5: 5785. doi: 10.1038/ncomms6785
    [27]
    Sawada H, Lee S, Shiroto T, et al. Flash Kα radiography of laser-driven solid sphere compression for fast ignition[J]. Applied Physics Letters, 2016, 108: 254101. doi: 10.1063/1.4954383
    [28]
    Le Pape S, Neumayer P, Fortmann C, et al. X-ray radiography and scattering diagnosis of dense shock-compressed matter[J]. Physics of Plasmas, 2010, 17: 056309. doi: 10.1063/1.3377785
    [29]
    Morace A, Fedeli L, Batani D, et al. Development of X-ray radiography for high energy density physics[J]. Physics of Plasmas, 2014, 21: 102712. doi: 10.1063/1.4900867
    [30]
    Chu Genbai, Xi Tao, Yu Minghai, et al. High-energy X-ray radiography of laser shock loaded metal dynamic fragmentation using high-intensity short-pulse laser[J]. Review of Scientific Instruments, 2018, 89: 115106. doi: 10.1063/1.5034401
    [31]
    de Rességuier T, Prudhomme G, Roland C, et al. Picosecond X-ray radiography of microjets expanding from laser shock-loaded grooves[J]. Journal of Applied Physics, 2018, 124: 065106. doi: 10.1063/1.5040304
    [32]
    Andreev A A, Bel’kov S A, Platonov K Y, et al. Picosecond X-ray radiography of superdense high-temperature laser plasma[J]. Optics and Spectroscopy, 2017, 123(3): 471-481. doi: 10.1134/S0030400X17090028
    [33]
    Sawada H, Daykin T S, Hutchinson T M, et al. Development of broadband X-ray radiography for diagnosing magnetically driven cylindrically compressed matter[J]. Physics of Plasmas, 2019, 26: 083104. doi: 10.1063/1.5100173
    [34]
    Dizière A, Pelka A, Ravasio A, et al. Formation and propagation of laser-driven plasma jets in an ambient medium studied with X-ray radiography and optical diagnostics[J]. Physics of Plasmas, 2015, 22: 012702. doi: 10.1063/1.4905525
    [35]
    Brambrink E, Baton S, Koenig M, et al. Short-pulse laser-driven X-ray radiography[J]. High Power Laser Science and Engineering, 2016, 4: e30. doi: 10.1017/hpl.2016.31
    [36]
    Khan S F, Martinez D A, Kalantar D H, et al. A dual high-energy radiography platform with 15 μm resolution at the National Ignition Facility[J]. Review of Scientific Instruments, 2021, 92: 043712. doi: 10.1063/5.0044043
    [37]
    Hill M P, Williams G J, Zylstra A B, et al. High resolution >40 keV X-ray radiography using an edge-on micro-flag backlighter at NIF-ARC[J]. Review of Scientific Instruments, 2021, 92: 033535. doi: 10.1063/5.0043783
    [38]
    Stoeckl C, Epstein R, Betti R, et al. Monochromatic backlighting of direct-drive cryogenic DT implosions on OMEGA[J]. Physics of Plasmas, 2017, 24: 056304. doi: 10.1063/1.4977918
    [39]
    Casey D T, Woods D  T, Smalyuk V A,  et al. Performance and mix measurements of indirect drive Cu-doped Be implosions[J]. Physical Review Letters, 2015, 114: 205002. doi: 10.1103/PhysRevLett.114.205002
    [40]
    Faenov A Y, Pikuz T A, Mabey P, et al. Advanced high resolution X-ray diagnostic for HEDP experiments[J]. Scientific Reports, 2018, 8: 16407. doi: 10.1038/s41598-018-34717-9
    [41]
    Hausladen P, Blackston M A, Brubaker E, et al. Fast neutron coded-aperture imaging of special nuclear material configurations[C]//Proceedings of the 53rd Annual Meeting of the INMM. Orlando, 2012.
    [42]
    Wang Sheng, Zou Yubin, Zhang Xueshuang, et al. Coded source imaging simulation with visible light[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 651(1): 187-191.
    [43]
    Li Yuanji, Huang Zhifeng, Chen Zhiqiang, et al. Preliminary study of coded-source-based neutron imaging at the CPHS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 651(1): 131-134.
    [44]
    Grünauer F. Image deconvolution and coded masks in neutron radiography[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 542(1/3): 342-352.
    [45]
    Zhu Qihua, Zhou Kainan, Su Jingqin, et al. The Xingguang-III laser facility: precise synchronization with femtosecond, picosecond and nanosecond beams[J]. Laser Physics Letters, 2018, 15: 015301. doi: 10.1088/1612-202X/aa94e9
    [46]
    Hanisch R J, White R L, Gilliland R L. Deconvolution of Hubbles space telescope images and spectra[M]//Jansson P A. Deconvolution of Images and Spectra. 2nd ed. San Diego: Academic Press, Inc. , 1997.
    [47]
    Biggs D S C, Andrews M. Acceleration of iterative image restoration algorithms[J]. Applied Optics, 1997, 36(8): 1766-1775. doi: 10.1364/AO.36.001766
    [48]
    Fiksel G, Marshall F J, Mileham C, et al. Note: spatial resolution of Fuji BAS-TR and BAS-SR imaging plates[J]. Review of Scientific Instruments, 2012, 83: 086103. doi: 10.1063/1.4739771
    [49]
    Park H S, Maddox B R, Giraldez E, et al. High-resolution 17-75 keV backlighters for high energy density experiments[J]. Physics of Plasmas, 2008, 15: 072705. doi: 10.1063/1.2957918
    [50]
    Park H S, Chambers D M, Chung H K, et al. High-energy Kα radiography using high-intensity, short-pulse lasers[J]. Physics of Plasmas, 2006, 13: 056309. doi: 10.1063/1.2178775
    [51]
    于明海, 谭放, 闫永宏, 等. 用于激光产生的高能X射线源能谱诊断的滤片堆栈谱仪的研制[J]. 原子能科学技术, 2017, 51(6):1090-1095 doi: 10.7538/yzk.2017.51.06.1090

    Yu Minghai, Tan Fang, Yan Yonghong, et al. Development of filter stack spectrometer for spectrum measurement of X ray generated by laser[J]. Atomic Energy Science and Technology, 2017, 51(6): 1090-1095 doi: 10.7538/yzk.2017.51.06.1090
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (687) PDF downloads(165) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return