| Citation: | Zhu Jungao, Zhao Yuan, Lai Meifu, et al. Study of space charge force for a laser-accelerated proton beam[J]. High Power Laser and Particle Beams, 2023, 35: 021004. doi: 10.11884/HPLPB202335.220171 |
Laser accelerators can provide proton beams with unique qualities, such as micron size, picosecond pulse duration and high peak current, and have been demonstrated for various applications and for scientific research purposes. The effect of the space charge force in high peak current beams is strong and raises challenges for application after beam transportation. We performed two-dimensional particle-in-cell simulations and studied the influence of electrons that have velocities close to that of the protons after laser acceleration. We employed ellipsoid models with different charge distributions to estimate the effects of the space charge force. Results demonstrate that space charge will affect beam transmission, and even lead to complete transmission failure if the number of protons per pulse exceeds 1010. The influence of the space charge force diminishes greatly after 20 ps, which corresponds to approximately 1.2 mm from the target.
| [1] |
Mulser P, Bauer D, Ruhl H. Collisionless laser-energy conversion by anharmonic resonance[J]. Physical Review Letters, 2008, 101: 225002. doi: 10.1103/PhysRevLett.101.225002
|
| [2] |
Snavely R A, Key M H, Hatchett S P, et al. Intense high-energy proton beams from petawatt-laser irradiation of solids[J]. Physical Review Letters, 2000, 85(14): 2945-2948. doi: 10.1103/PhysRevLett.85.2945
|
| [3] |
Hegelich B M, Albright B J, Cobble J, et al. Laser acceleration of quasi-monoenergetic MeV ion beams[J]. Nature, 2006, 439(7075): 441-444. doi: 10.1038/nature04400
|
| [4] |
Fuchs J, Antici P, D’Humières E, et al. Laser-driven proton scaling laws and new paths towards energy increase[J]. Nature Physics, 2006, 2(1): 48-54. doi: 10.1038/nphys199
|
| [5] |
Esirkepov T, Borghesi M, Bulanov S V, et al. Highly efficient relativistic-ion generation in the laser-piston regime[J]. Physical Review Letters, 2004, 92: 175003. doi: 10.1103/PhysRevLett.92.175003
|
| [6] |
Yan Xueqing, Lin C, Sheng Z M, et al. Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime[J]. Physical Review Letters, 2008, 100: 135003. doi: 10.1103/PhysRevLett.100.135003
|
| [7] |
Kar S, Kakolee K F, Qiao Bin, et al. Ion acceleration in multispecies targets driven by intense laser radiation pressure[J]. Physical Review Letters, 2012, 109: 185006. doi: 10.1103/PhysRevLett.109.185006
|
| [8] |
Weng Suming, Sheng Z M, Murakami M, et al. Optimization of hole-boring radiation pressure acceleration of ion beams for fusion ignition[J]. Matter and Radiation at Extremes, 2018, 3(1): 28-39. doi: 10.1016/j.mre.2017.09.002
|
| [9] |
Tripathi V K, Liu T C, Shao Xi. Laser radiation pressure proton acceleration in gaseous target[J]. Matter and Radiation at Extremes, 2017, 2(5): 256-262. doi: 10.1016/j.mre.2017.07.001
|
| [10] |
Yin Lilan, Albright B J, Bowers K J, et al. Three-dimensional dynamics of breakout afterburner ion acceleration using high-contrast short-pulse laser and nanoscale targets[J]. Physical Review Letters, 2011, 107: 045003. doi: 10.1103/PhysRevLett.107.045003
|
| [11] |
Wagner F, Deppert O, Brabetz C, et al. Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets[J]. Physical Review Letters, 2016, 116: 205002. doi: 10.1103/PhysRevLett.116.205002
|
| [12] |
Kim I J, Pae K H, Choi I W, et al. Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses[J]. Physics of Plasmas, 2016, 23: 070701. doi: 10.1063/1.4958654
|
| [13] |
Higginson A, Gray R J, King M, et al. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme[J]. Nature Communications, 2018, 9: 724. doi: 10.1038/s41467-018-03063-9
|
| [14] |
Dromey B, Coughlan M, Senje L, et al. Picosecond metrology of laser-driven proton bursts[J]. Nature Communications, 2016, 7: 10642. doi: 10.1038/ncomms10642
|
| [15] |
Nakamura T, Sakagami H, Johzaki T, et al. Optimization of cone target geometry for fast ignition[J]. Physics of Plasmas, 2007, 14: 103105. doi: 10.1063/1.2789561
|
| [16] |
Atzeni S, Temporal M, Honrubia J J. A first analysis of fast ignition of precompressed ICF fuel by laser-accelerated protons[J]. Nuclear Fusion, 2002, 42(3): L1-L4. doi: 10.1088/0029-5515/42/3/101
|
| [17] |
Fernández J C, Honrubia J J, Albright B J, et al. Progress and prospects of ion-driven fast ignition[J]. Nuclear Fusion, 2009, 49: 065004. doi: 10.1088/0029-5515/49/6/065004
|
| [18] |
Cutroneo M, Torrisi L, Ullschmied J, et al. Multi-energy ion implantation from high-intensity laser[J]. Nukleonika, 2016, 61(2): 109-113. doi: 10.1515/nuka-2016-0019
|
| [19] |
Jagielski J, Piatkowska A, Aubert P, et al. Ion implantation for surface modification of biomaterials[J]. Surface and Coatings Technology, 2006, 200: 6355-6361. doi: 10.1016/j.surfcoat.2005.11.005
|
| [20] |
Romagnani L, Fuchs J, Borghesi M, et al. Dynamics of electric fields driving the laser acceleration of multi-MeV protons[J]. Physical Review Letters, 2005, 95: 195001. doi: 10.1103/PhysRevLett.95.195001
|
| [21] |
Zylstra A B, Frenje J A, Grabowski P E, et al. Measurement of charged-particle stopping in warm dense plasma[J]. Physical Review Letters, 2015, 114: 215002. doi: 10.1103/PhysRevLett.114.215002
|
| [22] |
Riley D. Generation and characterisation of warm dense matter with intense lasers[J]. Plasma Physics and Controlled Fusion, 2018, 60: 14033. doi: 10.1088/1361-6587/aa8dd5
|
| [23] |
Hoffmann D H H, Blazevic A, Ni P, et al. Present and future perspectives for high energy density physics with intense heavy ion and laser beams[J]. Laser and Particle Beams, 2005, 23(1): 47-53.
|
| [24] |
Patel P K, Mackinnon A J, Key M H, et al. Isochoric heating of solid-density matter with an ultrafast proton beam[J]. Physical Review Letters, 2003, 91: 125004. doi: 10.1103/PhysRevLett.91.125004
|
| [25] |
Jung D, Yin Lilan, Albright B J, et al. Monoenergetic ion beam generation by driving ion solitary waves with circularly polarized laser light[J]. Physical Review Letters, 2011, 107: 115002. doi: 10.1103/PhysRevLett.107.115002
|
| [26] |
Schollmeier M, Becker S, Geißel M, et al. Controlled transport and focusing of laser-accelerated protons with miniature magnetic devices[J]. Physical Review Letters, 2008, 101: 055004. doi: 10.1103/PhysRevLett.101.055004
|
| [27] |
Zhu Jungao, Zhu Kun, Tao Li, et al. Beam line design of compact laser plasma accelerator[J]. Chinese Physics Letters, 2017, 34: 054101. doi: 10.1088/0256-307X/34/5/054101
|
| [28] |
Kraft S D, Richter C, Zeil K, et al. Dose-dependent biological damage of tumour cells by laser-accelerated proton beams[J]. New Journal of Physics, 2010, 12: 085003. doi: 10.1088/1367-2630/12/8/085003
|
| [29] |
Zhu J G, Wu Minjian, Zhu K, et al. Demonstration of tailored energy deposition in a laser proton accelerator[J]. Physical Review Accelerators and Beams, 2020, 23: 121304. doi: 10.1103/PhysRevAccelBeams.23.121304
|