Volume 35 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Zhao Kai, Wang Youjing, Fu Changbo, et al. Review on Hawking-Unruh radiation studies with high-intensity lasers[J]. High Power Laser and Particle Beams, 2023, 35: 012012. doi: 10.11884/HPLPB202335.220197
Citation: Zhao Kai, Wang Youjing, Fu Changbo, et al. Review on Hawking-Unruh radiation studies with high-intensity lasers[J]. High Power Laser and Particle Beams, 2023, 35: 012012. doi: 10.11884/HPLPB202335.220197

Review on Hawking-Unruh radiation studies with high-intensity lasers

doi: 10.11884/HPLPB202335.220197
  • Received Date: 2022-06-15
  • Rev Recd Date: 2022-11-04
  • Available Online: 2022-11-10
  • Publish Date: 2023-01-15
  • Methods, as well as challenges, in experimental studies on Hawking-Unruh radiation (HUR) with high-intensity laser (HIL) will be reviewed in this paper. Hawking-Unruh radiation is one of the most important effects in quantum gravity. Experimental studies on it are critical for the development of quantum gravity theories, or theories like the Theory of Everything etc. Various experimental methods have been developed to study the HUR, including high-intensity laser, storage ring, Penning trap, Bose-Einstein condensate, acoustic methods etc. There are two major types of HUR studies with HILs today, the artificial optical blackhole method and the laser acceleration method. In the 1st method, nonlinear properties of optical media are used to generate artificial blackholes as platforms for studies on related phenomena including HUR. In the 2nd method, electrons’ HUR radiation spectra under extreme HILs are expected.
  • loading
  • [1]
    Carlip S. Quantum gravity: a progress report[J]. Reports on Progress in Physics, 2001, 64(8): 885-942. doi: 10.1088/0034-4885/64/8/301
    [2]
    Howl R, Hackermüller L, Bruschi D E, et al. Gravity in the quantum lab[J]. Advances in Physics: X, 2018, 3: 1383184.
    [3]
    Xu Renxin, Wu Fei. Ultra high energy cosmic rays: strangelets?[J]. Chinese Physics Letters, 2003, 20(6): 806-809. doi: 10.1088/0256-307X/20/6/308
    [4]
    Faccio D. Laser pulse analogues for gravity and analogue Hawking radiation[J]. Contemporary Physics, 2012, 53(2): 97-112. doi: 10.1080/00107514.2011.642559
    [5]
    Hajicek P. Origin of Hawking radiation[J]. Physical Review D, 1987, 36(4): 1065-1079. doi: 10.1103/PhysRevD.36.1065
    [6]
    Almheiri A, Hartman T, Maldacena J, et al. The entropy of Hawking radiation[J]. Reviews of Modern Physics, 2021, 93: 035002. doi: 10.1103/RevModPhys.93.035002
    [7]
    Fulling S A. Nonuniqueness of canonical field quantization in Riemannian space-time[J]. Physical Review D, 1973, 7(10): 2850-2862. doi: 10.1103/PhysRevD.7.2850
    [8]
    Davies P C W. Scalar production in Schwarzschild and Rindler metrics[J]. Journal of Physics A: Mathematical and General, 1975, 8(4): 609-616. doi: 10.1088/0305-4470/8/4/022
    [9]
    Unruh W G. Notes on black-hole evaporation[J]. Physical Review D, 1976, 14(4): 870-892. doi: 10.1103/PhysRevD.14.870
    [10]
    Crispino L C B, Higuchi A, Matsas G E A. The Unruh effect and its applications[J]. Reviews of Modern Physics, 2008, 80(3): 787-838. doi: 10.1103/RevModPhys.80.787
    [11]
    Schützhold R, Schaller G, Habs D. Publisher’s note: signatures of the Unruh effect from electrons accelerated by ultrastrong laser fields [Phys. Rev. Lett. 97, 121302 (2006)][J]. Physical Review Letters, 2006, 97: 139904. doi: 10.1103/PhysRevLett.97.139904
    [12]
    Bays H. Adiposopathy, metabolic syndrome, quantum physics, general relativity, chaos and the Theory of Everything[J]. Expert Review of Cardiovascular Therapy, 2005, 3(3): 393-404. doi: 10.1586/14779072.3.3.393
    [13]
    Laughlin R B, Pines D. The Theory of Everything[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(1): 28-31. doi: 10.1073/pnas.97.1.28
    [14]
    Schützhold R, Schaller G, Habs D. Tabletop creation of entangled multi-keV photon pairs and the Unruh effect[J]. Physical Review Letters, 2008, 100: 091301. doi: 10.1103/PhysRevLett.100.091301
    [15]
    Singleton D, Wilburn S. Hawking radiation, Unruh radiation, and the equivalence principle[J]. Physical Review Letters, 2011, 107: 081102. doi: 10.1103/PhysRevLett.107.081102
    [16]
    Peña I, Sudarsky D. On the possibility of measuring the Unruh effect[J]. Foundations of Physics, 2014, 44(6): 689-708. doi: 10.1007/s10701-014-9806-0
    [17]
    Lin S Y, Hu B L. Backreaction and the Unruh effect: new insights from exact solutions of uniformly accelerated detectors[J]. Physical Review D, 2007, 76: 064008. doi: 10.1103/PhysRevD.76.064008
    [18]
    Thirolf P G, Habs D, Henig A, et al. Signatures of the Unruh effect via high-power, short-pulse lasers[J]. The European Physical Journal D, 2009, 55(2): 379-389. doi: 10.1140/epjd/e2009-00149-x
    [19]
    Dodonov V V. Current status of the dynamical Casimir effect[J]. Physica Scripta, 2010, 82: 038105. doi: 10.1088/0031-8949/82/03/038105
    [20]
    Schützhold R, Maia C. Quantum radiation by electrons in lasers and the Unruh effect[J]. The European Physical Journal D, 2009, 55(2): 375-378. doi: 10.1140/epjd/e2009-00038-4
    [21]
    Levin O, Peleg Y, Peres A. Unruh effect for circular motion in a cavity[J]. Journal of Physics A: Mathematical and General, 1993, 26(12): 3001-3011. doi: 10.1088/0305-4470/26/12/035
    [22]
    Bell J S, Leinaas J M. The Unruh effect and quantum fluctuations of electrons in storage rings[J]. Nuclear Physics B, 1987, 284: 488-508. doi: 10.1016/0550-3213(87)90047-2
    [23]
    Belyanin A, Kocharovsky V V, Capasso F, et al. Quantum electrodynamics of accelerated atoms in free space and in cavities[J]. Physical Review A, 2006, 74: 023807. doi: 10.1103/PhysRevA.74.023807
    [24]
    Fabbri A, Balbinot R. Ramp-up of Hawking radiation in Bose-Einstein-condensate analog black holes[J]. Physical Review Letters, 2021, 126: 111301. doi: 10.1103/PhysRevLett.126.111301
    [25]
    Gooding C, Biermann S, Erne S, et al. Interferometric Unruh detectors for Bose-Einstein condensates[J]. Physical Review Letters, 2020, 125: 213603. doi: 10.1103/PhysRevLett.125.213603
    [26]
    Rodríguez-Laguna J, Tarruell L, Lewenstein M, et al. Synthetic Unruh effect in cold atoms[J]. Physical Review A, 2017, 95: 013627. doi: 10.1103/PhysRevA.95.013627
    [27]
    Kharzeev D. Quantum black Holes and thermalization in relativistic heavy ion collisions[J]. Nuclear Physics A, 2006, 774: 315-324. doi: 10.1016/j.nuclphysa.2006.06.051
    [28]
    Chen P, Tajima T. Testing Unruh radiation with ultraintense lasers[J]. Physical Review Letters, 1999, 83(2): 256-259. doi: 10.1103/PhysRevLett.83.256
    [29]
    Euvé L P, Robertson S, James N, et al. Scattering of co-current surface waves on an analogue black hole[J]. Physical Review Letters, 2020, 124: 141101. doi: 10.1103/PhysRevLett.124.141101
    [30]
    Patrick S, Goodhew H, Gooding C, et al. Backreaction in an analogue black hole experiment[J]. Physical Review Letters, 2021, 126: 041105. doi: 10.1103/PhysRevLett.126.041105
    [31]
    Pelat A, Gautier F, Conlon S C, et al. The acoustic black hole: a review of theory and applications[J]. Journal of Sound and Vibration, 2020, 476: 115316. doi: 10.1016/j.jsv.2020.115316
    [32]
    高南沙, 张智成, 王谦, 等. 声学黑洞研究进展与应用[J]. 科学通报, 2022, 67(12):1203-1213 doi: 10.1360/TB-2021-0439

    Gao Nansha, Zhang Zhicheng, Wang Qian, et al. Progress and applications of acoustic black holes[J]. Chinese Science Bulletin, 2022, 67(12): 1203-1213 doi: 10.1360/TB-2021-0439
    [33]
    Barceló C, Liberati S, Visser M. Analogue gravity[J]. Living Reviews in Relativity, 2011, 14: 3. doi: 10.12942/lrr-2011-3
    [34]
    Frercks J. Fizeau’s research program on ether drag: a long quest for a publishable experiment[J]. Physics in Perspective, 2005, 7(1): 35-65. doi: 10.1007/s00016-004-0224-0
    [35]
    Agrawal G. Nonlinear fiber optics[M]. 5th ed. Oxford: Academic Press, 2013.
    [36]
    Rubino E, Belgiorno F, Cacciatori S L, et al. Experimental evidence of analogue Hawking radiation from ultrashort laser pulse filaments[J]. New Journal of Physics, 2011, 13: 085005. doi: 10.1088/1367-2630/13/8/085005
    [37]
    Belgiorno F, Cacciatori S L, Clerici M, et al. Hawking radiation from ultrashort laser pulse filaments[J]. Physical Review Letters, 2010, 105: 203901. doi: 10.1103/PhysRevLett.105.203901
    [38]
    Philbin T G, Kuklewicz C, Robertson S, et al. Fiber-optical analog of the event horizon[J]. Science, 2008, 319(5868): 1367-1370. doi: 10.1126/science.1153625
    [39]
    Rubino E, McLenaghan J, Kehr S C, et al. Negative-frequency resonant radiation[J]. Physical Review Letters, 2012, 108: 253901. doi: 10.1103/PhysRevLett.108.253901
    [40]
    Drori J, Rosenberg Y, Bermudez D, et al. Observation of stimulated Hawking radiation in an optical analogue[J]. Physical Review Letters, 2019, 122: 010404. doi: 10.1103/PhysRevLett.122.010404
    [41]
    Wang Weibin, Yang Hua, Tang Pinghua, et al. Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths[J]. Optics Express, 2013, 21(9): 11215-11226. doi: 10.1364/OE.21.011215
    [42]
    Petty J, König F. Optical analogue gravity physics: resonant radiation[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 378: 20190231. doi: 10.1098/rsta.2019.0231
    [43]
    Ispirian K A. High energy experimental proposals for the study of Unruh (effect) radiation[C]//Proceedings of the 3rd International Conference on Quantum Electrodynamics and Statistical Physics. 2012: 209-212.
    [44]
    Ringwald A. Fundamental physics at an X-ray free electron laser[C]//Proceedings of the Electromagnetic Probes of Fundamental Physics. 2003: 63-74.
    [45]
    Consoli F, Tikhonchuk V T, Bardon M, et al. Laser produced electromagnetic pulses: generation, detection and mitigation[J]. High Power Laser Science and Engineering, 2020, 8: e22. doi: 10.1017/hpl.2020.13
    [46]
    Han Manfen, Zheng Jinxing, Zeng Xianhu, et al. Investigation of combined degrader for proton facility based on BDSIM/FLUKA Monte Carlo methods[J]. Nuclear Science and Techniques, 2022, 33: 17. doi: 10.1007/s41365-022-01002-4
    [47]
    Hu Po, Ma Zhiguo, Zhao Kai, et al. Development of gated fiber detectors for laser-induced strong electromagnetic pulse environments[J]. Nuclear Science and Techniques, 2021, 32: 58. doi: 10.1007/s41365-021-00898-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (858) PDF downloads(116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return