Volume 35 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Zhang Bo, Zhang Zhimeng, Zhou Weimin. Comparison of different improvements to mainstream model of nonlinear Compton scattering[J]. High Power Laser and Particle Beams, 2023, 35: 012007. doi: 10.11884/HPLPB202335.220204
Citation: Zhang Bo, Zhang Zhimeng, Zhou Weimin. Comparison of different improvements to mainstream model of nonlinear Compton scattering[J]. High Power Laser and Particle Beams, 2023, 35: 012007. doi: 10.11884/HPLPB202335.220204

Comparison of different improvements to mainstream model of nonlinear Compton scattering

doi: 10.11884/HPLPB202335.220204
  • Received Date: 2022-06-22
  • Rev Recd Date: 2022-10-17
  • Available Online: 2022-10-22
  • Publish Date: 2023-01-15
  • Nonlinear Compton scattering is one of the dominant processes in future ultra-short ultra-intense laser-matter interactions. Today, most related researches are based on the mainstream model of nonlinear Compton scattering, which assumes short radiation formation interval, ignores effects of involved laser photon energy and is not spin-resolved. To depict nonlinear Compton scattering more precisely in wider parameter space, improved theories beyond these assumptions have been proposed in recent years. In this paper, we reviewe the major recent improvements, analyze their applicability, discusse their basic characteristics and physical effects on nonlinear Compton scatterings.
  • loading
  • [1]
    Danson C N, Brummitt P A, Clarke R J, et al. Vulcan Petawatt—an ultra-high-intensity interaction facility[J]. Nuclear Fusion, 2004, 44(12): S239-S246. doi: 10.1088/0029-5515/44/12/S15
    [2]
    Weber S, Bechet S, Borneis S, et al. P3: An installation for high-energy density plasma physics and ultra-high intensity laser-matter interaction at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2017, 2(4): 149-176. doi: 10.1016/j.mre.2017.03.003
    [3]
    Guo Zhen, Yu Lianghong, Wang Jianye, et al. Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: sapphire chirped pulse amplification laser system[J]. Optics Express, 2018, 26(20): 26776-26786. doi: 10.1364/OE.26.026776
    [4]
    Zou J P, Le Blanc C, Papadopoulos D N, et al. Design and current progress of the Apollon 10 PW project[J]. High Power Laser Science and Engineering, 2015, 3: e2. doi: 10.1017/hpl.2014.41
    [5]
    Gales S, Tanaka K A, Balabanski D L, et al. The extreme light infrastructure nuclear physics (ELI-NP) facility: new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams[J]. Reports on Progress in Physics, 2018, 81: 094301. doi: 10.1088/1361-6633/aacfe8
    [6]
    Bromage J, Bahk S W, Begishev I A, et al. Technology development for ultraintense all-OPCPA systems[J]. High Power Laser Science and Engineering, 2019, 7: e4. doi: 10.1017/hpl.2018.64
    [7]
    Cartlidge E. The light fantastic[J]. Science, 2018, 359(6374): 382-385. doi: 10.1126/science.359.6374.382
    [8]
    Tiwari G, Gaul E, Martinez M, et al. Beam distortion effects upon focusing an ultrashort petawatt laser pulse to greater than 1022W/cm2[J]. Optics Letters, 2019, 44(11): 2764-2767. doi: 10.1364/OL.44.002764
    [9]
    Zeng Xiaoming, Zhou Kainan, Zuo Yanlei, et al. Multi-petawatt laser facility fully based on optical parametric chirped pulse amplification[J]. Optics Letters, 2017, 42(10): 2014-2017. doi: 10.1364/OL.42.002014
    [10]
    Yanovsky V, Chvykov V, Kalinchenko G, et al. Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate[J]. Optics Express, 2008, 16(3): 2109-2114. doi: 10.1364/OE.16.002109
    [11]
    Pirozhkov A S, Fukuda Y, Nishiuchi M, et al. Approaching the diffraction-limited, bandwidth-limited petawatt[J]. Optics Express, 2017, 25(17): 20486-20501. doi: 10.1364/OE.25.020486
    [12]
    Yoon J W, Jeon C, Shin J, et al. Achieving the laser intensity of 5.5×1022W/cm2 with a wavefront-corrected multi-PW laser[J]. Optics Express, 2019, 27(15): 20412-20420. doi: 10.1364/OE.27.020412
    [13]
    Yoon J W, Yoon J W, Kim Y G, et al. Realization of laser intensity over 1023W/cm2[J]. Optica, 2021, 8(5): 630-635. doi: 10.1364/OPTICA.420520
    [14]
    Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 2019, 7: e54. doi: 10.1017/hpl.2019.36
    [15]
    Jackson J D. Classical electrodynamics[M]. New York: Wiley Press, 1975.
    [16]
    Landau L D, Lifshitz E M. The classical theory of fields[M]. Oxford: Pergamon Press, 1975.
    [17]
    Schwinger J. On gauge invariance and vacuum polarization[J]. Physical Review, 1951, 82(5): 664-679. doi: 10.1103/PhysRev.82.664
    [18]
    Klein J J, Nigam B P. Birefringence of the vacuum[J]. Physical Review, 1964, 135(5B): B1279-B1280. doi: 10.1103/PhysRev.135.B1279
    [19]
    Adler S L, Bahcall J N, Callan C G, et al. Photon splitting in a strong magnetic field[J]. Physical Review Letters, 1970, 25(15): 1061-1065. doi: 10.1103/PhysRevLett.25.1061
    [20]
    Unruh W G. Notes on black-hole evaporation[J]. Physical Review D, 1976, 14(4): 870-892. doi: 10.1103/PhysRevD.14.870
    [21]
    Zhang Bo, Zhang Zhimeng, Hong Wei, et al. Vacuum radiation induced by time dependent electric field[J]. Physics Letters B, 2017, 767: 431-436. doi: 10.1016/j.physletb.2017.01.076
    [22]
    Marklund M, Shukla P K. Nonlinear collective effects in photon-photon and photon-plasma interactions[J]. Reviews of Modern Physics, 2006, 78(2): 591-640. doi: 10.1103/RevModPhys.78.591
    [23]
    Ehlotzky F, Krajewska K, Kamiński J Z. Fundamental processes of quantum electrodynamics in laser fields of relativistic power[J]. Reports on Progress in Physics, 2009, 72: 046401. doi: 10.1088/0034-4885/72/4/046401
    [24]
    Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 2012, 84(3): 1177-1228. doi: 10.1103/RevModPhys.84.1177
    [25]
    Mourou G, Tajima T. Summary of the IZEST science and aspiration[J]. The European Physical Journal Special Topics, 2014, 223(6): 979-984. doi: 10.1140/epjst/e2014-02148-4
    [26]
    Cole J M, Behm K T, Gerstmayr E, et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam[J]. Physical Review X, 2018, 8: 011020.
    [27]
    Poder K, Tamburini M, Sarri G, et al. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser[J]. Physical Review X, 2018, 8: 031004.
    [28]
    Wistisen T N, Di Piazza A, Knudsen H V, et al. Experimental evidence of quantum radiation reaction in aligned crystals[J]. Nature Communications, 2018, 9: 795. doi: 10.1038/s41467-018-03165-4
    [29]
    Wistisen T N, Di Piazza A, Nielsen C F, et al. Quantum radiation reaction in aligned crystals beyond the local constant field approximation[J]. Physical Review Research, 2019, 1: 033014. doi: 10.1103/PhysRevResearch.1.033014
    [30]
    Nikishov A I, Ritus V I. Quantum processes in the field of a plane electromagnetic wave and in a constant field. Part II[J]. Zh. Eksp. Teor. Fiz, 1964, 46: 776.
    [31]
    Nikishov A I, Ritus V I. Pair production by a photon and photon emission by an electron in the field of an intense electromagnetic wave and in a constant field[J]. Soviet Physics JETP, 1967, 25(6): 1135-1142.
    [32]
    Ritus V I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field[J]. Journal of Soviet Laser Research, 1985, 6(5): 497-617. doi: 10.1007/BF01120220
    [33]
    Ji Liangliang, Pukhov A, Kostyukov I Y, et al. Radiation-reaction trapping of electrons in extreme laser fields[J]. Physical Review Letters, 2014, 112: 145003. doi: 10.1103/PhysRevLett.112.145003
    [34]
    Gonoskov A, Bashinov A, Gonoskov I, et al. Anomalous radiative trapping in laser fields of extreme intensity[J]. Physical Review Letters, 2014, 113: 014801. doi: 10.1103/PhysRevLett.113.014801
    [35]
    Duclous R, Kirk J G, Bell A R. Monte Carlo calculations of pair production in high-intensity laser–plasma interactions[J]. Plasma Physics and Controlled Fusion, 2011, 53: 015009. doi: 10.1088/0741-3335/53/1/015009
    [36]
    Arber T D, Bennett K, Brady C S, et al. Contemporary particle-in-cell approach to laser-plasma modelling[J]. Plasma Physics and Controlled Fusion, 2015, 57: 113001. doi: 10.1088/0741-3335/57/11/113001
    [37]
    Ridgers C P, Kirk J G, Duclous R, et al. Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions[J]. Journal of Computational Physics, 2014, 260: 273-285. doi: 10.1016/j.jcp.2013.12.007
    [38]
    Zhang Bo, Zhang Zhimeng, Deng Zhigang, et al. Effects of involved laser photons on radiation and electron-positron pair production in one coherence interval in ultra intense lasers[J]. Scientific Reports, 2018, 8: 16862. doi: 10.1038/s41598-018-35312-8
    [39]
    Zhang Bo, Zhang Zhimeng, Deng Zhigang, et al. Quantum mechanisms of electron and positron acceleration through nonlinear Compton scatterings and nonlinear Breit-Wheeler processes in coherent photon dominated regime[J]. Scientific Reports, 2019, 9: 18876. doi: 10.1038/s41598-019-55472-5
    [40]
    Li Yanfei, Shaisultanov R, Hatsagortsyan K Z, et al. Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse[J]. Physical Review Letters, 2019, 122: 154801. doi: 10.1103/PhysRevLett.122.154801
    [41]
    Li Yanfei, Shaisultanov R, Chen Y Y, et al. Polarized ultrashort brilliant multi-GeV γ rays via single-shot laser-electron interaction[J]. Physical Review Letters, 2020, 124: 014801. doi: 10.1103/PhysRevLett.124.014801
    [42]
    Li Yanfei, Chen Yueyue, Wang Weimin, et al. Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field[J]. Physical Review Letters, 2020, 125: 044802. doi: 10.1103/PhysRevLett.125.044802
    [43]
    McMaster W H. Matrix representation of polarization[J]. Reviews of Modern Physics, 1961, 33(1): 8-27. doi: 10.1103/RevModPhys.33.8
    [44]
    Baier V N, Katkov V M, Strakhovenko V M. Quantum radiation theory in inhomogeneous external fields[J]. Nuclear Physics B, 1989, 328(2): 387-405. doi: 10.1016/0550-3213(89)90334-9
    [45]
    Dinu V, Harvey C, Ilderton A, et al. Quantum radiation reaction: from interference to incoherence[J]. Physical Review Letters, 2016, 116: 044801. doi: 10.1103/PhysRevLett.116.044801
    [46]
    Di Piazza A, Tamburini M, Meuren S, et al. Implementing nonlinear Compton scattering beyond the local-constant-field approximation[J]. Physical Review A, 2018, 98: 012134. doi: 10.1103/PhysRevA.98.012134
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (665) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return