Volume 35 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Wang Yechen, Wang Weiquan, Yu Tongpu, et al. Production of highly-directional positron beam by relativistic femto-second laser irradiating micro-structured surface target[J]. High Power Laser and Particle Beams, 2023, 35: 012005. doi: 10.11884/HPLPB202335.220216
Citation: Wang Yechen, Wang Weiquan, Yu Tongpu, et al. Production of highly-directional positron beam by relativistic femto-second laser irradiating micro-structured surface target[J]. High Power Laser and Particle Beams, 2023, 35: 012005. doi: 10.11884/HPLPB202335.220216

Production of highly-directional positron beam by relativistic femto-second laser irradiating micro-structured surface target

doi: 10.11884/HPLPB202335.220216
  • Received Date: 2022-07-05
  • Rev Recd Date: 2022-11-07
  • Available Online: 2022-11-17
  • Publish Date: 2023-01-15
  • Laser driven positron source has the advantages of high yield, short pulse width and high energy. In this paper, particle-in-cell simulation and Monte-Carlo simulation are combined to simulate the process of positron production in the interaction of relativistic femtosecond laser with a micro-structured surface target (MST) with a micron-scale wire array on the surface. The results show that when the laser energy is about 6 J and the pulse width is about 40 fs, fast electrons with the yield of 1011 orders of magnitude and the cut-off energy of about 120 MeV can be obtained. When the electrons bombard a high-Z conversion target, positrons with the yield of 109 orders of magnitude, and cut-off energy about 50 MeV are obtained. The divergence angle of the positron beam is 4.92°. Compared with planar targets, the use of MSTs can benefit the yield, energy and directivity of positrons.
  • loading
  • [1]
    Adam J, Adamczyk L, Adams J R, et al. Measurement of e+ e momentum and angular distributions from linearly polarized photon collisions[J]. Physical Review Letters, 2021, 127: 052302. doi: 10.1103/PhysRevLett.127.052302
    [2]
    Guessoum N. Positron astrophysics and areas of relation to low-energy positron physics[J]. The European Physical Journal D, 2014, 68: 137. doi: 10.1140/epjd/e2014-40705-7
    [3]
    Weissleder R, Pittet M J. Imaging in the era of molecular oncology[J]. Nature, 2008, 452(7187): 580-589. doi: 10.1038/nature06917
    [4]
    Mayer J, Hugenschmidt C, Schreckenbach K. Direct observation of the surface segregation of Cu in Pd by time-resolved positron-annihilation-induced Auger electron spectroscopy[J]. Physical Review Letters, 2010, 105: 207401. doi: 10.1103/PhysRevLett.105.207401
    [5]
    Nakashima K, Cowan T E, Takabe H. Electron-positron pair production by ultra-intense lasers[J]. AIP Conference Proceedings, 2002, 634(1): 323-328.
    [6]
    Müller C. Nonlinear Bethe-Heitler pair creation with attosecond laser pulses at the LHC[J]. Physics Letters B, 2009, 672(1): 56-60. doi: 10.1016/j.physletb.2009.01.009
    [7]
    Krajewska K, Kamiński J Z. Breit-Wheeler process in intense short laser pulses[J]. Physical Review A, 2012, 86: 052104. doi: 10.1103/PhysRevA.86.052104
    [8]
    朱兴龙, 王伟民, 余同普, 等. 极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展[J]. 物理学报, 2021, 70:085202 doi: 10.7498/aps.70.20202224

    Zhu Xinglong, Wang Weimin, Yu Tongpu, et al. Research progress of ultrabright γ-ray radiation and electron-positron pair production driven by extremely intense laser fields[J]. Acta Physica Sinica, 2021, 70: 085202 doi: 10.7498/aps.70.20202224
    [9]
    Gryaznykh D A, Kandiev Y Z, Lykov V A. Estimates of electron-positron pair production in the interaction of high-power laser radiation with high-Z targets[J]. Journal of Experimental and Theoretical Physics Letters, 1998, 67(4): 257-262. doi: 10.1134/1.567660
    [10]
    Myatt J, Delettrez J A, Maximov A V, et al. Optimizing electron-positron pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation[J]. Physical Review E, 2009, 79: 066409. doi: 10.1103/PhysRevE.79.066409
    [11]
    Nakashima K, Takabe H. Numerical study of pair creation by ultraintense lasers[J]. Physics of Plasmas, 2002, 9(5): 1505-1512. doi: 10.1063/1.1464145
    [12]
    闫永宏, 吴玉迟, 董克攻, 等. 激光固体靶相互作用产生正电子的模拟研究[J]. 强激光与粒子束, 2015, 27:112006 doi: 10.11884/HPLPB201527.112006

    Yan Yonghong, Wu Yuchi, Dong Kegong, et al. Simulation study of positron production from laser-solid interactions[J]. High Power Laser and Particle Beams, 2015, 27: 112006 doi: 10.11884/HPLPB201527.112006
    [13]
    Chen Hui, Wilks S C, Bonlie J D, et al. Relativistic positron creation using ultraintense short pulse lasers[J]. Physical Review Letters, 2009, 102: 105001. doi: 10.1103/PhysRevLett.102.105001
    [14]
    Chen Hui, Wilks S C, Meyerhofer D D, et al. Relativistic quasimonoenergetic positron jets from intense laser-solid interactions[J]. Physical Review Letters, 2010, 105: 015003. doi: 10.1103/PhysRevLett.105.015003
    [15]
    Wu Yuchi, Dong Kegong, Yan Yonghong, et al. Pair production by high intensity picosecond laser interacting with thick solid target at XingGuangIII[J]. High Energy Density Physics, 2017, 23: 115-118. doi: 10.1016/j.hedp.2017.03.006
    [16]
    Sarri G, Schumaker W, Di Piazza A, et al. Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams[J]. Physical Review Letters, 2013, 110: 255002. doi: 10.1103/PhysRevLett.110.255002
    [17]
    Sarri G, Poder K, Cole J M, et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory[J]. Nature Communications, 2015, 6: 6747. doi: 10.1038/ncomms7747
    [18]
    Cao Lihua, Gu Yuqiu, Zhao Zongqing, et al. Enhanced absorption of intense short-pulse laser light by subwavelength nanolayered target[J]. Physics of Plasmas, 2010, 17: 043103. doi: 10.1063/1.3360298
    [19]
    Jiang Sheng, Ji Liangliang, Audesirk H, et al. Microengineering laser plasma interactions at relativistic intensities[J]. Physical Review Letters, 2016, 116: 085002. doi: 10.1103/PhysRevLett.116.085002
    [20]
    Wang Yechen, Yin Yan, Wang Weiquan, et al. Copious positron production by femto-second laser via absorption enhancement in a microstructured surface target[J]. Scientific Reports, 2020, 10: 5861. doi: 10.1038/s41598-020-61964-6
    [21]
    Jiang Sheng, Link A, Canning D, et al. Enhancing positron production using front surface target structures[J]. Applied Physics Letters, 2021, 118: 094101. doi: 10.1063/5.0038222
    [22]
    Hu Lixiang, Yu Tongpu, Sheng Zhengming, et al. Attosecond electron bunches from a nanofiber driven by Laguerre-Gaussian laser pulses[J]. Scientific Reports, 2018, 8: 7282. doi: 10.1038/s41598-018-25421-9
    [23]
    Ridgers C O, Brady C S, Duclous R, et al. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids[J]. Physical Review Letters, 2012, 108: 165006. doi: 10.1103/PhysRevLett.108.165006
    [24]
    Böhlen T T, Cerutti F, Chin M P W, et al. The FLUKA code: developments and challenges for high energy and medical applications[J]. Nuclear Data Sheets, 2014, 120: 211-214. doi: 10.1016/j.nds.2014.07.049
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article views (572) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return