Volume 35 Issue 8
Jul.  2023
Turn off MathJax
Article Contents
Chen Yuqing, Wang Lei, Zhao Lishan, et al. Simulation study of the relationship between low-frequency communication EM wave transmissivity of plasma sheaths and irradiation microwave E-field strength[J]. High Power Laser and Particle Beams, 2023, 35: 089001. doi: 10.11884/HPLPB202335.220361
Citation: Chen Yuqing, Wang Lei, Zhao Lishan, et al. Simulation study of the relationship between low-frequency communication EM wave transmissivity of plasma sheaths and irradiation microwave E-field strength[J]. High Power Laser and Particle Beams, 2023, 35: 089001. doi: 10.11884/HPLPB202335.220361

Simulation study of the relationship between low-frequency communication EM wave transmissivity of plasma sheaths and irradiation microwave E-field strength

doi: 10.11884/HPLPB202335.220361
  • Received Date: 2023-01-12
  • Accepted Date: 2023-03-28
  • Rev Recd Date: 2023-04-15
  • Available Online: 2023-05-15
  • Publish Date: 2023-08-15
  • During the flight of hypersonic vehicle, plasma sheath will be produced on the surface due to the influence of surface shockwave. Because the plasma sheath will absorb, reflect and scatter electromagnetic waves, the communication signal will be attenuated or even interrupted, causing “blackout” problem. Theoretically, the interaction between the plasma sheath and microwave is nonlinearly changing with electric field, so there may be a suitable E-field amplitude and irradiation time interval to make electromagnetic wave transmissivity rise. For this possibility, Finite Element Analysis is used to conduct a two-dimensional coupled simulation of the plasma sheath flow field and the electromagnetic field on the hypersonic vehicle’s surface, and the change of the plasma sheath transmissivity after microwave irradiation is obtained. The plasma sheath was irradiated for 30 ns with electric field of 5×104 V/m, 1×105 V/m, 2.5×105 V/m, 5×105 V/m, respectively. The maximum transmissivity to 1.2 GHz and 1.6 GHz electromagnetic waves is enhanced after irradiation. It provides a new possibility to solve the “blackout” problem.
  • loading
  • [1]
    龚旻, 谭杰, 李大伟, 等. 临近空间高超声速飞行器黑障问题研究综述[J]. 宇航学报, 2018, 39(10):1059-1070 doi: 10.3873/j.issn.1000-1328.2018.10.001

    Gong Min, Tan Jie, Li Dawen, et al. Review of blackout problems of near space hypersonic vehicles[J]. Journal of Astronautics, 2018, 39(10): 1059-1070 doi: 10.3873/j.issn.1000-1328.2018.10.001
    [2]
    徐茂格, 席文君. 近空间高超音速飞行器射频通信“黑障”研究[J]. 电讯技术, 2009, 49(10):49-52 doi: 10.3969/j.issn.1001-893x.2009.10.011

    Xu Maoge, Xi Wenjun. Study on blackout in near space hypersonic vehicle radio frequency communication[J]. Telecommunication Engineering, 2009, 49(10): 49-52 doi: 10.3969/j.issn.1001-893x.2009.10.011
    [3]
    Blazek J. Computational fluid dynamics: principles and applications[M]. 3rd ed. Britain: Butterworth-Heinemann, 2015: 20-57.
    [4]
    Ouyang Wenchong, Liu Yanming. Impact of ionization rate on the transmission of electromagnetic wave in realistic plasma[J]. Physics of Plasmas, 2020, 27: 033507. doi: 10.1063/1.5135607
    [5]
    Bian Zheng, Li Jiangting, Guo Lixin. Simulation and feature extraction of the dynamic electromagnetic scattering of a hypersonic vehicle covered with plasma sheath[J]. Remote Sensing, 2020, 12: 2740. doi: 10.3390/rs12172740
    [6]
    梁晓庚, 田宏亮. 临近空间高超声速飞行器发展现状及其防御问题分析[J]. 航空兵器, 2016(4):3-10 doi: 10.19297/j.cnki.41-1228/tj.2016.04.001

    Liang Xiaogeng, Tian Hongliang. Analysis of the development status and the defense problem of near space hypersonic vehicle[J]. Aero Weaponry, 2016(4): 3-10 doi: 10.19297/j.cnki.41-1228/tj.2016.04.001
    [7]
    于哲峰, 刘佳琪, 刘连元, 等. 临近空间高超声速飞行器RCS特性研究[J]. 宇航学报, 2014, 35(6): 713-719

    Yu Zhefeng, Liu Jiaqi, Liu Lianyuan, et al. Research on the RCS characteristics of hypersonic near space vehicle[J]. Journal of Astronautics, 35(6): 713-719
    [8]
    于哲峰, 孙良奎, 马平, 等. 黑障对通信安全的影响及几种可能的解决方案[J]. 红外, 2017, 38(2):39-45 doi: 10.3969/j.issn.1672-8785.2017.02.007

    Yu Zhefeng, Sun Liangkui, Ma Ping, et al. Influence of blackout on communication security and several possible solutions[J]. Infrared, 2017, 38(2): 39-45 doi: 10.3969/j.issn.1672-8785.2017.02.007
    [9]
    Ouyang Wenchong, Jin Tao, Wu Zhengwei, et al. Study of terahertz wave propagation in realistic plasma sheath for the whole reentry process[J]. IEEE Transactions on Plasma Science, 2021, 49(1): 460-465. doi: 10.1109/TPS.2020.3042220
    [10]
    Sternberg N, Smolyakov A I. Resonant transmission of electromagnetic waves in multilayer dense-plasma structures[J]. IEEE Transactions on Plasma Science, 2009, 37(7): 1251-1260. doi: 10.1109/TPS.2009.2020399
    [11]
    Hodara H. The use of magnetic fields in the elimination of the re-entry radio blackout[J]. Proceedings of the IRE, 1961, 49(12): 1825-1830. doi: 10.1109/JRPROC.1961.287709
    [12]
    Shashurin A, Zhuang T, Teel G, et al. Laboratory modeling of the plasma layer at hypersonic flight[J]. Journal of Spacecraft and Rockets, 2014, 51(3): 838-846. doi: 10.2514/1.A32771
    [13]
    Keidar M, Kim M, Boyd I D. Electromagnetic reduction of plasma density during atmospheric reentry and hypersonic flights[J]. Journal of Spacecraft and Rockets, 2008, 45(3): 445-453. doi: 10.2514/1.32147
    [14]
    Li Ji, He Mang, Li Xiuping, et al. Multiphysics modeling of electromagnetic wave-hypersonic vehicle interactions under high-power microwave illumination: 2-D case[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(7): 3653-3664. doi: 10.1109/TAP.2018.2835300
    [15]
    Li Zhigang, Yuan Zhongcai, Wang Jiachun, et al. Simulation of propagation of the HPM in the low-pressure argon plasma[J]. Plasma Science and Technology, 2017, 20: 025401.
    [16]
    Kundrapu M, Loverich J, Beckwith K, et al. Modeling radio communication blackout and blackout mitigation in hypersonic vehicles[J]. Journal of Spacecraft and Rockets, 2015, 52(3): 853-862. doi: 10.2514/1.A33122
    [17]
    韦毅. 高超飞行器等离子体鞘套的多场耦合数值研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 18-25

    Wei Y. Multi-field coupling numerical study on plasmasonic sheath of hypersonic flying craft[D]. Harbin: Harbin Institute of Technology, 2017: 18-25.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (470) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return