Volume 35 Issue 7
Jun.  2023
Turn off MathJax
Article Contents
Liu Zhengyi, Ye Xianlin, Zhang Song, et al. Development of 2.94 μm room temperature CW Er:YAG laser technology[J]. High Power Laser and Particle Beams, 2023, 35: 071007. doi: 10.11884/HPLPB202335.220391
Citation: Liu Zhengyi, Ye Xianlin, Zhang Song, et al. Development of 2.94 μm room temperature CW Er:YAG laser technology[J]. High Power Laser and Particle Beams, 2023, 35: 071007. doi: 10.11884/HPLPB202335.220391

Development of 2.94 μm room temperature CW Er:YAG laser technology

doi: 10.11884/HPLPB202335.220391
  • Received Date: 2022-11-17
  • Accepted Date: 2023-02-27
  • Rev Recd Date: 2023-02-27
  • Available Online: 2023-03-13
  • Publish Date: 2023-06-15
  • In this paper, we report a simple structure, room-temperature operation, LD end-pumped 2.94 μm Er:YAG continuous wave laser. The laser uses double-ended bonded YAG end caps to reduce the end-surface temperature of the crystal. The pump source uses a small core diameter output fiber and an aspheric mirror coupling system, which reduces the dispersion rate of small pump spots in the crystal and therefore improves pumping uniformity. When the pump light wavelength is 969.7 nm, the absorption of pump light in the front section of Er:YAG crystal is weak, accordingly the thermal aggregation effect of the front end of the laser gain medium is mitigated. We observed and compared the temperature of the end faces of bonded and non-bonded Er:YAG crystals with a thermal imaging camera, simulated the thermal distribution using COMSOL software, and proved the effectiveness of the above measures in reducing the thermal effect of highly doped Er:YAG crystal. We finally succeeded in achieving a continuous laser output of 2.94 μm at 155 mW. We also observed the output wavelength’s red-shift phenomenon with the pump power increase and explained it theoretically at the energy transfer level.
  • loading
  • [1]
    Zharikov E V, Zhekov V I, Kulevskii L A, et al. Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 μ[J]. Soviet Journal of Quantum Electronics, 1975, 4(8): 1039-1040. doi: 10.1070/QE1975v004n08ABEH011147
    [2]
    方聪, 王思博, 惠勇凌, 等. 掺铒中红外激光器的进展[J]. 激光与光电子学进展, 2019, 56:180002

    Fang Cong, Wang Sibo, Hui Yongling, et al. Progress on erbium-doped mid-infrared laser[J]. Laser & Optoelectronics Progress, 2019, 56: 180002
    [3]
    Xu Zhi, Wang Pengyuan, Liu Wanfa, et al. 2.94 μm diode side pumped Er:YAG laser[C]//Proceedings of SPIE 10254. 2017: 91-96.
    [4]
    Voronov A A, Kozlovskii V I, Korostelin Y V, et al. Passive Q-switching of the diode-pumped Er: YAG laser cavity with the Q-switch based on the Fe2+: ZnSe crystal[J]. Bulletin of the Lebedev Physics Institute, 2010, 37(6): 169-172. doi: 10.3103/S1068335610060035
    [5]
    Dinerman B J, Moulton P F. 3-μm cw laser operations in erbium-doped YSGG, GGG, and YAG[J]. Optics Letters, 1994, 19(15): 1143-1145. doi: 10.1364/OL.19.001143
    [6]
    Chen D W, Fincher C L, Rose T S, et al. Diode-pumped 1-W continuous-wave Er: YAG 3-µm laser[J]. Optics Letters, 1999, 24(6): 385-387. doi: 10.1364/OL.24.000385
    [7]
    Ye Xianlin, Liu Zhengyi, Zhang Song, et al. High efficiency and high beam quality Er: YSGG mid-infrared continuous-wave laser[J]. Infrared Physics & Technology, 2022, 127: 104427.
    [8]
    Ye Xianlin, Xu Xiafei, Ren Huaijin, et al. Study of LD side-pumped two-rod Er: YSGG mid-infrared laser with 61-W output power[J]. Optics Communications, 2022, 507: 127608. doi: 10.1016/j.optcom.2021.127608
    [9]
    Bowman S R, Lynn J G, Searles S K, et al. Power scaling of diode-pumped 2 micron lasers[C]//Proceedings of the LEOS'93. 1993: 692.
    [10]
    Li T, Zhao S Z, Zhuo Zhuang, et al. Passively mode-locked YVO4/Nd: YVO4 composite crystal green laser with a semiconductor saturable absorber mirror[J]. Laser Physics Letters, 2010, 6(1): 30-33.
    [11]
    Clarkson W A. Thermal effects and their mitigation in end-pumped solid-state lasers[J]. Journal of Physics D: Applied Physics, 2001, 34(16): 2381-2395. doi: 10.1088/0022-3727/34/16/302
    [12]
    徐赛. LD泵浦3微米Er固体激光器输出特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 30-35

    Xu Sai. Studies on output performance of 3 micron band Er-doped solid state lasers pumped by LD[D]. Harbin: Harbin Institute of Technology, 2015: 30-35
    [13]
    Kawase H, Yasuhara R. 2.92-µm high-efficiency continuous-wave laser operation of diode-pumped Er: YAP crystal at room temperature[J]. Optics Express, 2019, 27(9): 12213-12220. doi: 10.1364/OE.27.012213
    [14]
    Yao Weichao, Uehara H, Kawase H, et al. Highly efficient Er: YAP laser with 6.9 W of output power at 2920 nm[J]. Optics Express, 2020, 28(13): 19000-19007. doi: 10.1364/OE.395802
    [15]
    Yao Weichao, Uehara H, Tokita S, et al. LD-pumped 2.8 μm Er: Lu2O3 ceramic laser with 6.7 W output power and >30% slope efficiency[J]. Applied Physics Express, 2021, 14: 012001. doi: 10.35848/1882-0786/abce9a
    [16]
    Sang Youbao, Liu Dong, Xia Xusheng, et al. A multi-wavelength pulsed mid-infrared laser based on Er: YAG[J]. Optics Communications, 2021, 485: 126667. doi: 10.1016/j.optcom.2020.126667
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (630) PDF downloads(115) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return