Volume 35 Issue 5
Apr.  2023
Turn off MathJax
Article Contents
Xie Xiangyu, Wang Peng, Deng Ying, et al. Ray tracing model of digital holography with single element interference[J]. High Power Laser and Particle Beams, 2023, 35: 059002. doi: 10.11884/HPLPB202335.220396
Citation: Xie Xiangyu, Wang Peng, Deng Ying, et al. Ray tracing model of digital holography with single element interference[J]. High Power Laser and Particle Beams, 2023, 35: 059002. doi: 10.11884/HPLPB202335.220396

Ray tracing model of digital holography with single element interference

doi: 10.11884/HPLPB202335.220396
  • Received Date: 2022-11-02
  • Rev Recd Date: 2023-03-02
  • Available Online: 2023-03-14
  • Publish Date: 2023-04-07
  • The phase information of the transmitted object, also known as digital holography, can be obtained by the element interference based on prism pair. This method has the advantages of compact structure, stable interference fringe and high measurement accuracy. In this paper, the ray tracing method is used to establish the equivalent model of ray tracing, considering the azimuth rotation of the prism pair and the eccentricity of the inclined plane. The equivalent model is used to simulate the digital holographic interference fringes, and give the analytic expressions of fringe density change and tilt. The interference digital holograms are obtained and the refractive index distribution is inversed for the micro structure optical elements such as single-mode and multimode fibers. The experimental device of micro imaging unit interference is built, and the actual measurement interference pattern is obtained. The experimental results are consistent with the simulation results, which proves the effectiveness of this model.
  • loading
  • [1]
    Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181. doi: 10.1126/science.1957169
    [2]
    Fercher A F, Hitzenberger C K, Kamp G, et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 1995, 117(1/2): 43-48.
    [3]
    孙伟文, 王帅军, 刘凯. 用于实时三维成像的双频结构光编解码方法[J]. 强激光与粒子束, 2017, 29:091009 doi: 10.11884/HPLPB201729.170063

    Sun Weiwen, Wang Shuaijun, Liu Kai. Dual-frequency structured light coding and decoding method for real-time three-dimension reconstruction[J]. High Power Laser and Particle Beams, 2017, 29: 091009 doi: 10.11884/HPLPB201729.170063
    [4]
    吴宇际, 张青, 王峰, 等. 广角任意反射面速度干涉仪虚像性质[J]. 强激光与粒子束, 2022, 34:112003 doi: 10.11884/HPLPB202234.220226

    Wu Yuji, Zhang Qing, Wang Feng, et al. Virtual image properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2022, 34: 112003 doi: 10.11884/HPLPB202234.220226
    [5]
    孙良伟, 罗箐. 同步辐射束流尺寸测量干涉仪的设计与仿真[J]. 强激光与粒子束, 2021, 33:084002 doi: 10.11884/HPLPB202133.210236

    Sun Liangwei, Luo Qing. Design and simulation of interferometer for synchrotron radiation beam size measurement[J]. High Power Laser and Particle Beams, 2021, 33: 084002 doi: 10.11884/HPLPB202133.210236
    [6]
    Ferrari J A, Frins E M. Single-element interferometer[J]. Optics Communications, 2007, 279(2): 235-239. doi: 10.1016/j.optcom.2007.07.038
    [7]
    宋哲义, 冯国英, 张涛. 不同浓度不同温度下葡萄糖溶液折射率的精确测量[J]. 中国激光, 2014, 41:1208008 doi: 10.3788/CJL201441.1208008

    Song Zheyi, Feng Guoying, Zhang Tao. Accurate measurement of the refractive index D-glucose solution at various concentrations at different temperatures[J]. Chinese Journal of Lasers, 2014, 41: 1208008 doi: 10.3788/CJL201441.1208008
    [8]
    Zhang T, Feng G Y, Song Z Y, et al. A single-element interferometer for measuring refractive index of transparent liquids[J]. Optics Communications, 2014, 332: 14-17. doi: 10.1016/j.optcom.2014.06.028
    [9]
    Wang C, Xie X Y, Zhang H, et al. Single-element real-time interferometric system for measuring dynamic temperature field of liquid medium[J]. AIP Advances, 2022, 12: 045010. doi: 10.1063/5.0087196
    [10]
    兰斌, 冯国英, 张涛, 等. 用于透明平板平行度和均匀性测量的单元件干涉仪[J]. 物理学报, 2017, 66:069501 doi: 10.7498/aps.66.069501

    Lan Bin, Feng Guoying, Zhang Tao, et al. A single-element interferometer for measuring parallelism and uniformity of transparent plate[J]. Acta Physica Sinica, 2017, 66: 069501 doi: 10.7498/aps.66.069501
    [11]
    Sánchez J R, Martínez-García A, Rayas J A, et al. LED source interferometer for microscopic fringe projection profilometry using a Gates’ interferometer configuration[J]. Optics and Lasers in Engineering, 2022, 149: 106822. doi: 10.1016/j.optlaseng.2021.106822
    [12]
    Rayas J A, León-Rodríguez M, Martínez-García A, et al. Using a single-cube beam-splitter as a fringe pattern generator within a structured-light projection system for surface metrology[J]. Optical Engineering, 2017, 56: 044103. doi: 10.1117/1.OE.56.4.044103
    [13]
    Riobó L M, Veiras F E, Garea M T, et al. Software-defined optoelectronics: space and frequency diversity in heterodyne interferometry[J]. IEEE Sensors Journal, 2018, 18(14): 5753-5760. doi: 10.1109/JSEN.2018.2842143
    [14]
    Hass K, Insabella R M, González M G, et al. A method for the calibration of wideband ultrasonic sensors for optoacoustics[J]. Review of Scientific Instruments, 2021, 92: 064904. doi: 10.1063/5.0041613
    [15]
    Picazo-Bueno J A, Trusiak M, Micó V. Single-shot slightly off-axis digital holographic microscopy with add-on module based on beamsplitter cube[J]. Optics Express, 2019, 27(4): 5655-5669. doi: 10.1364/OE.27.005655
    [16]
    王驰, 解翔宇, 邓颖, 等. 基于单元件干涉仪的计算机断层扫描重建光纤三维折射率分布[J]. 强激光与粒子束, 2022, 34:041006 doi: 10.11884/HPLPB202234.220035

    Wang Chi, Xie Xiangyu, Deng Ying, et al. Three-dimensional refractive index reconstruction of optical fibers based on single-element interferometer computed tomography[J]. High Power Laser and Particle Beams, 2022, 34: 041006 doi: 10.11884/HPLPB202234.220035
    [17]
    罗文全, 冯国英, 杜永兆. 基于分光棱镜干涉法测量透明液体折射率[J]. 中国激光, 2013, 40:0508005 doi: 10.3788/CJL201340.0508005

    Luo Wenquan, Feng Guoying, Du Yongzhao. Refraction index measurement of transparent liquid by single-element interferometer[J]. Chinese Journal of Lasers, 2013, 40: 0508005 doi: 10.3788/CJL201340.0508005
    [18]
    Zhang H Z, Jiang Q. Highly sensitive air pressure sensor based on Fabry-Perot interference[J]. IEEE Sensors Journal, 2022, 22(7): 6637-6643. doi: 10.1109/JSEN.2022.3152045
    [19]
    Demeter-Finzi A, Ruschin S. Double resonant vertically accessed optical waveguide sensor[J]. IEEE Sensors Journal, 2021, 21(2): 1478-1484. doi: 10.1109/JSEN.2020.3018231
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (465) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return