Volume 35 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
Zhang Huicong, Wan Lu, Zhou Tao. Research progress of spatiotemporal mode-locked laser based on multimode fiber[J]. High Power Laser and Particle Beams, 2023, 35: 101002. doi: 10.11884/HPLPB202335.220410
Citation: Zhang Huicong, Wan Lu, Zhou Tao. Research progress of spatiotemporal mode-locked laser based on multimode fiber[J]. High Power Laser and Particle Beams, 2023, 35: 101002. doi: 10.11884/HPLPB202335.220410

Research progress of spatiotemporal mode-locked laser based on multimode fiber

doi: 10.11884/HPLPB202335.220410
  • Received Date: 2022-12-29
  • Accepted Date: 2023-05-15
  • Rev Recd Date: 2023-05-22
  • Available Online: 2023-06-13
  • Publish Date: 2023-10-08
  • This paper introduces the basic principle of spatiotemporal mode-locking (STML) and the theoretical model of STML—attractor dissection.  It presents the recent research progress about STML fiber laser from two aspects of spatial optical structures and all-fiber structures, including the improvement of laser cavity type, the enhancement of output performance, and the observation of real-time dynamics, etc.  The advantage and insufficiency of the current STML laser are analyzed, and the development direction is forecasted: STML laser possesses great potential in generating high-power and ultrashort pulse, but to some extent, the poor quality of output modes hinders its application; improving the beam quality by self-similar evolution, wavefront shaping, etc. will be the direction to develop  STML laser in the future.

  • loading
  • [1]
    Kerse C, Kalaycıoğlu H, Elahi P, et al. Ablation-cooled material removal with ultrafast bursts of pulses[J]. Nature, 2016, 537(7618): 84-88. doi: 10.1038/nature18619
    [2]
    Bailey G W, Price R L, Voelkl E, et al. Applications of the SESAM in materials science[J]. Microscopy and Microanalysis, 2001, 7(S2): 1126-1127. doi: 10.1017/S1431927600031706
    [3]
    Zhao Kangjun, Gao Chenxin, Xiao Xiaosheng, et al. Buildup dynamics of asynchronous vector solitons in a polarization-multiplexed dual-comb fiber laser[J]. Optics Letters, 2020, 45(14): 4040-4043. doi: 10.1364/OL.398323
    [4]
    Chen Jie, Zhao Xin, Yao Zijun, et al. Dual-comb spectroscopy of methane based on a free-running Erbium-doped fiber laser[J]. Optics Express, 2019, 27(8): 11406-11412. doi: 10.1364/OE.27.011406
    [5]
    Bai Xue, Ma Jun, Li Xu, et al. Focus-tunable fiber-laser ultrasound sensor for high-resolution linear-scanning photoacoustic computed tomography[J]. Applied Physics Letters, 2020, 116: 153701. doi: 10.1063/5.0006248
    [6]
    Letokhov V S. Laser biology and medicine[J]. Nature, 1985, 316(6026): 325-330. doi: 10.1038/316325a0
    [7]
    Brasch V, Geiselmann M, Herr T, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation[J]. Science, 2016, 351(6271): 357-360. doi: 10.1126/science.aad4811
    [8]
    Wang Heming, Lu Yukun, Wu Lue, et al. Dirac solitons in optical microresonators[J]. Light: Science & Applications, 2020, 9: 205.
    [9]
    Goda K, Jalali B. Dispersive Fourier transformation for fast continuous single-shot measurements[J]. Nature Photonics, 2013, 7(2): 102-112. doi: 10.1038/nphoton.2012.359
    [10]
    Tang Haocheng, Men Ting, Liu Xianglei, et al. Single-shot compressed optical field topography[J]. Light: Science & Applications, 2022, 11: 244.
    [11]
    Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221. doi: 10.1016/0030-4018(85)90120-8
    [12]
    Cho C Y, Huang Y P, Su K W. The energy scaling in a side-pumped ultra-low-magnification unstable resonator by employing a compact master oscillator power amplifier[J]. Applied Physics B, 2016, 122: 261.
    [13]
    Liu Bin, Liu Chong, Shen Lifeng, et al. Beam quality management by periodic reproduction of wavefront aberrations in end-pumped Nd: YVO4 laser amplifiers[J]. Optics Express, 2016, 24(8): 8988-8996. doi: 10.1364/OE.24.008988
    [14]
    Dong Xiaolin, Xiao Hu, Xu Shanhui, et al. 122-W high-power single-frequency MOPA fiber laser in all-fiber format[J]. Chinese Optics Letters, 2011, 9: 111404. doi: 10.3788/COL201109.111404
    [15]
    Chen Shuo, Liu Yuanyuan, Jin Zhen, et al. Asymmetry core effects in multimode fibers for space-division multiplexing[J]. Journal of the Optical Society of America B, 2021, 38(11): 3309-3318. doi: 10.1364/JOSAB.431198
    [16]
    Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 2013, 7(5): 354-362. doi: 10.1038/nphoton.2013.94
    [17]
    Hofmann P, Mafi A, Jollivet C, et al. Detailed investigation of mode-field adapters utilizing multimode-interference in graded index fibers[J]. Journal of Lightwave Technology, 2012, 30(14): 2289-2298. doi: 10.1109/JLT.2012.2196406
    [18]
    Fabert M, Săpânțan M, Krupa K, et al. Coherent combining of self-cleaned multimode beams[J]. Scientific Reports, 2020, 10: 20481. doi: 10.1038/s41598-020-77505-0
    [19]
    Leventoux Y, Parriaux A, Sidelnikov O, et al. Highly efficient few-mode spatial beam self-cleaning at 1.5μm[J]. Optics Express, 2020, 28(10): 14333-14344. doi: 10.1364/OE.392081
    [20]
    Mangini F, Gervaziev M, Ferraro M, et al. Statistical mechanics of beam self-cleaning in GRIN multimode optical fibers[J]. Optics Express, 2022, 30(7): 10850-10865. doi: 10.1364/OE.449187
    [21]
    Chen Jikai, Wang Zhaokun, Li Liujiang, et al. GIMF-based SA for generation of high pulse energy ultrafast solitons in a mode-locked linear-cavity fiber laser[J]. Journal of Lightwave Technology, 2020, 38(6): 1480-1485. doi: 10.1109/JLT.2019.2954828
    [22]
    Leventoux Y, Granger G, Krupa K, et al. Frequency-resolved spatial beam mapping in multimode fibers: application to mid-infrared supercontinuum generation[J]. Optics Letters, 2021, 46(15): 3717-3720. doi: 10.1364/OL.428623
    [23]
    Ahsan A S, Agrawal G P. Graded-index solitons in multimode fibers[J]. Optics Letters, 2018, 43(14): 3345-3348. doi: 10.1364/OL.43.003345
    [24]
    Osman M S. On multi-soliton solutions for the (2+1)-dimensional breaking soliton equation with variable coefficients in a graded-index waveguide[J]. Computers & Mathematics with Applications, 2018, 75(1): 1-6.
    [25]
    Wang Xiaoyue, Peng Junsong, Huang Kun, et al. Experimental study on buildup dynamics of a harmonic mode-locking soliton fiber laser[J]. Optics Express, 2019, 27(20): 28808-28815. doi: 10.1364/OE.27.028808
    [26]
    Eslami Z, Ryczkowski P, Amiot C, et al. High-power short-wavelength infrared supercontinuum generation in multimode fluoride fiber[J]. Journal of the Optical Society of America B, 2019, 36(2): A72-A78. doi: 10.1364/JOSAB.36.000A72
    [27]
    Lopez-Galmiche G, Eznaveh Z S, Eftekhar M A, et al. Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm[J]. Optics Letters, 2016, 41(11): 2553-2556. doi: 10.1364/OL.41.002553
    [28]
    Deng Zhixiang, Chen Yu, Liu Jun, et al. Emission of multiple resonant radiations by spatiotemporal oscillation of multimode dark pulses[J]. Optics Express, 2019, 27(24): 36022-36033. doi: 10.1364/OE.27.036022
    [29]
    Chekhovskoy I S, Rubenchik A M, Shtyrina O V, et al. Nonlinear discrete wavefront shaping for spatiotemporal pulse compression with multicore fibers[J]. Journal of the Optical Society of America B, 2018, 35(9): 2169-2175. doi: 10.1364/JOSAB.35.002169
    [30]
    Auston D. Transverse mode locking[J]. IEEE Journal of Quantum Electronics, 1968, 4(6): 420-422. doi: 10.1109/JQE.1968.1075357
    [31]
    Smith P W. Simultaneous phase-locking of longitudinal and transverse laser modes[J]. Applied Physics Letters, 1968, 13(7): 235-237. doi: 10.1063/1.1652586
    [32]
    Côté D, Van Driel H M. Period doubling of a femtosecond Ti: sapphire laser by total mode locking[J]. Optics Letters, 1998, 23(9): 715-717. doi: 10.1364/OL.23.000715
    [33]
    Wright L G, Christodoulides D N, Wise F W. Spatiotemporal mode-locking in multimode fiber lasers[J]. Science, 2017, 358(6359): 94-97. doi: 10.1126/science.aao0831
    [34]
    Wright L G, Sidorenko P, Pourbeyram H, et al. Mechanisms of spatiotemporal mode-locking[J]. Nature Physics, 2020, 16(5): 565-570. doi: 10.1038/s41567-020-0784-1
    [35]
    Su Ning, Li Pingxue, Yao Chuanfei, et al. Passively mode-locked Yb-doped all-fiber oscillator operating at 979 nm and 1032 nm with the single wall carbon nanotubes as SA[J]. Optik, 2019, 198: 163282. doi: 10.1016/j.ijleo.2019.163282
    [36]
    Cui Yudong, Liu Xueming. Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons[J]. Optics Express, 2013, 21(16): 18969-18974. doi: 10.1364/OE.21.018969
    [37]
    Gong Ning, Hu Xuewen, Fang Tiantian, et al. Transition metals embedded siloxene as single-atom catalyst for advanced sulfur host in lithium–sulfur batteries: a theoretical study[J]. Advanced Energy Materials, 2022, 12: 2201530. doi: 10.1002/aenm.202201530
    [38]
    Doran N J, Wood D. Nonlinear-optical loop mirror[J]. Optics Letters, 1988, 13(1): 56-58. doi: 10.1364/OL.13.000056
    [39]
    Fermann M E, Haberl F, Hofer M, et al. Nonlinear amplifying loop mirror[J]. Optics Letters, 1990, 15(13): 752-754. doi: 10.1364/OL.15.000752
    [40]
    Liu Yusong, Luo Yiyang, Xia Ran, et al. Internal motions of harmonically mode-locked soliton molecules in a NPR based fiber laser[J]. Optics Communications, 2021, 486: 126790. doi: 10.1016/j.optcom.2021.126790
    [41]
    Qin Huaqiang, Xiao Xiaosheng, Wang Pan, et al. Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser[J]. Optics Letters, 2018, 43(9): 1982-1985. doi: 10.1364/OL.43.001982
    [42]
    Ding Yihang, Xiao Xiaosheng, Wang Pan, et al. Multiple-soliton in spatiotemporal mode-locked multimode fiber lasers[J]. Optics Express, 2019, 27(8): 11435-11446. doi: 10.1364/OE.27.011435
    [43]
    Ding Yihang, Xiao Xiaosheng, Liu Kewei, et al. Spatiotemporal mode-locking in lasers with large modal dispersion[J]. Physical Review Letters, 2021, 126: 093901. doi: 10.1103/PhysRevLett.126.093901
    [44]
    Nan Suqin, Bai Yanfeng, Huang Xianwei, et al. The unified imaging condition of Fourier-transform ghost imaging in the far field[J]. Laser Physics Letters, 2020, 17: 055201. doi: 10.1088/1612-202X/ab7a9a
    [45]
    Guo Yuankai, Wen Xiaoxiao, Lin Wei, et al. Real-time multispeckle spectral-temporal measurement unveils the complexity of spatiotemporal solitons[J]. Nature Communications, 2021, 12: 67. doi: 10.1038/s41467-020-20438-z
    [46]
    Liu Kewei, Xiao Xiaosheng, Ding Yihang, et al. Buildup dynamics of multiple solitons in spatiotemporal mode-locked fiber lasers[J]. Photonics Research, 2021, 9(10): 1898-1906. doi: 10.1364/PRJ.428687
    [47]
    Kong Lingjie, Xiao Xiaosheng, Yang Changxi. Operating regime analysis of a mode-locking fiber laser using a difference equation model[J]. Journal of Optics, 2011, 13: 105201. doi: 10.1088/2040-8978/13/10/105201
    [48]
    Li Feng, Wai P K A, Kutz J N. Geometrical description of the onset of multi-pulsing in mode-locked laser cavities[J]. Journal of the Optical Society of America B, 2010, 27(10): 2068-2077. doi: 10.1364/JOSAB.27.002068
    [49]
    Liu Kewei, Xiao Xiaosheng, Yang Changxi. Observation of transition between multimode Q-switching and spatiotemporal mode locking[J]. Photonics Research, 2021, 9(4): 530-534. doi: 10.1364/PRJ.416523
    [50]
    Teğin U, Kakkava E, Rahmani B, et al. Spatiotemporal self-similar fiber laser[J]. Optica, 2019, 6(11): 1412-1415. doi: 10.1364/OPTICA.6.001412
    [51]
    Teğin U, Rahmani B, Kakkava E, et al. Single-mode output by controlling the spatiotemporal nonlinearities in mode-locked femtosecond multimode fiber lasers[J]. Advanced Photonics, 2020, 2: 056005.
    [52]
    Wei Xiaoming, Jing J C, Shen Yuecheng, et al. Harnessing a multi-dimensional fibre laser using genetic wavefront shaping[J]. Light: Science & Applications, 2020, 9: 149.
    [53]
    Ruan Qiujun, Xiao Xiaosheng, Zou Jinhai, et al. Visible-wavelength spatiotemporal mode-locked fiber laser delivering 9 ps, 4 nJ pulses at 635 nm[J]. Laser & Photonics Reviews, 2022, 16: 2100678.
    [54]
    Zou Jinhai, Dong Chuchu, Wang Hongjian, et al. Towards visible-wavelength passively mode-locked lasers in all-fibre format[J]. Light: Science & Applications, 2020, 9: 61.
    [55]
    Teğin U, Rahmani B, Kakkava E, et al. All-fiber spatiotemporally mode-locked laser with multimode fiber-based filtering[J]. Optics Express, 2020, 28(16): 23433-23438. doi: 10.1364/OE.399668
    [56]
    Teğin U, Ortaç B. All-fiber all-normal-dispersion femtosecond laser with a nonlinear multimodal interference-based saturable absorber[J]. Optics Letters, 2018, 43(7): 1611-1614. doi: 10.1364/OL.43.001611
    [57]
    Wu Han, Lin Wei, Tan Yanjie, et al. Pulses with switchable wavelengths and hysteresis in an all-fiber spatio-temporal mode-locked laser[J]. Applied Physics Express, 2020, 13: 022008. doi: 10.35848/1882-0786/ab6938
    [58]
    Long Jingan, Gao Yuxin, Lin Wei, et al. Switchable and spacing tunable dual-wavelength spatiotemporal mode-locked fiber laser[J]. Optics Letters, 2021, 46(3): 588-591. doi: 10.1364/OL.412086
    [59]
    Ma Zelong, Long Jingan, Lin Wei, et al. Tunable spatiotemporal mode-locked fiber laser at 1.55 μm[J]. Optics Express, 2021, 29(6): 9465-9473. doi: 10.1364/OE.415318
    [60]
    Lin Xubin, Gao Yuxin, Long Jingan, et al. All few-mode fiber spatiotemporal mode-locked figure-eight laser[J]. Journal of Lightwave Technology, 2021, 39(17): 5611-5616. doi: 10.1109/JLT.2021.3087784
    [61]
    Wu Jiawen, Liu Guangxin, Gao Yuxin, et al. Switchable femtosecond and picosecond spatiotemporal mode-locked fiber laser based on NALM and multimode interference filtering effects[J]. Optics & Laser Technology, 2022, 155: 108414.
    [62]
    Xie Shangzhi, Jin Liang, Zhang He, et al. All-fiber high-power spatiotemporal mode-locked laser based on multimode interference filtering[J]. Optics Express, 2022, 30(2): 2909-2917. doi: 10.1364/OE.443505
    [63]
    Zhang Huaiwei, Zhang Yunhong, Peng Jiying, et al. All-fiber spatiotemporal mode-locking lasers with large modal dispersion[J]. Photonics Research, 2022, 10(2): 483-490. doi: 10.1364/PRJ.444750
    [64]
    Zhang Xuebin, Wang Zhaokun, Shen Changyu, et al. Spatiotemporal self-mode-locked operation in a compact partial multimode Er-doped fiber laser[J]. Optics Letters, 2022, 47(8): 2081-2084. doi: 10.1364/OL.451832
    [65]
    Qiu Mingwei, Chen Mengmeng, Zhang Zuxing. Wavelength-dependent Kerr beam self-cleaning in spatiotemporal mode-locked multimode fiber laser[J]. IEEE Photonics Technology Letters, 2021, 33(19): 1073-1076. doi: 10.1109/LPT.2021.3103154
    [66]
    Dai Chuansheng, Dong Zhipeng, Lin Jiaqiang, et al. Self-cleaning effect in an all-fiber spatiotemporal mode-locked laser based on graded-index multimode fiber[J]. Optik, 2021, 243: 167487. doi: 10.1016/j.ijleo.2021.167487
    [67]
    Lyu Meng, Lin Zhiquan, Li Guowei, et al. Fast modal decomposition for optical fibers using digital holography[J]. Scientific Reports, 2017, 7: 6556. doi: 10.1038/s41598-017-06974-7
    [68]
    Fontaine N K, Ryf R, Chen H S, et al. Laguerre-Gaussian mode sorter[J]. Nature Communications, 2019, 10: 1865. doi: 10.1038/s41467-019-09840-4
    [69]
    Shapira O, Abouraddy A F, Joannopoulos J D, et al. Complete modal decomposition for optical waveguides[J]. Physical Review Letters, 2005, 94: 143902. doi: 10.1103/PhysRevLett.94.143902
    [70]
    Brüning R, Gelszinnis P, Schulze C, et al. Comparative analysis of numerical methods for the mode analysis of laser beams[J]. Applied Optics, 2013, 52(32): 7769-7777. doi: 10.1364/AO.52.007769
    [71]
    Lü Haibin, Zhou Pu, Wang Xiaolin, et al. Fast and accurate modal decomposition of multimode fiber based on stochastic parallel gradient descent algorithm[J]. Applied Optics, 2013, 52(12): 2905-2908. doi: 10.1364/AO.52.002905
    [72]
    Xie Kun, Liu Wenguang, Zhou Qiong, et al. Adaptive phase correction of dynamic multimode beam based on modal decomposition[J]. Optics Express, 2019, 27(10): 13793-13802. doi: 10.1364/OE.27.013793
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(2)

    Article views (830) PDF downloads(191) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return