Volume 35 Issue 8
Jul.  2023
Turn off MathJax
Article Contents
Fang Jinyong, Zhai Chang, Wu Jiangniu, et al. A method for generating high power comb spectrum microwave[J]. High Power Laser and Particle Beams, 2023, 35: 083003. doi: 10.11884/HPLPB202335.230050
Citation: Fang Jinyong, Zhai Chang, Wu Jiangniu, et al. A method for generating high power comb spectrum microwave[J]. High Power Laser and Particle Beams, 2023, 35: 083003. doi: 10.11884/HPLPB202335.230050

A method for generating high power comb spectrum microwave

doi: 10.11884/HPLPB202335.230050
  • Received Date: 2023-03-09
  • Accepted Date: 2023-06-27
  • Rev Recd Date: 2023-06-29
  • Available Online: 2023-07-07
  • Publish Date: 2023-08-15
  • Comb spectrum microwave usually refers to electromagnetic wave with center frequency spectrum distribution similar to comb shape, and energy distribution at multiple frequency points within a certain bandwidth. Comb spectrum microwave has unique advantages in electronic countermeasure that other countermeasure ways do not have, and shows an excellent application prospect in communication countermeasure, radar countermeasure and other fields. This paper introduces a method to generate high power comb spectrum microwave. The microwave generated by wideband continuous wave source is compressed by using channel encoding pulse compression technology to obtain the comb spectrum microwave with center frequency of 2.85 GHz, bandwidth of 1 GHz, spectral gap of 250 kHz and peak power of 160 kW. The subsequent experiments further show that the center frequency, bandwidth and spectral gap of comb spectrum microwave obtained by this method are flexible and adjustable, which can be used in a variety of electronic countermeasure scenarios to improve the anti-jamming capability.
  • loading
  • [1]
    Feng Xiaoyao, Chen Zhizhang, Xu Zhimeng. Time-reversal source reconstruction with electromagnetic kurtosis[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(10): 6816-6823. doi: 10.1109/TAP.2021.3069523
    [2]
    王朗, 雷方燕, 胡进光. HPM短脉冲雷达发射信号的重构与仿真[J]. 强激光与粒子束, 2019, 31:063002 doi: 10.11884/HPLPB201931.190024

    Wang Lang, Lei Fangyan, Hu Jinguang. Reconstruction and simulation of HPM short pulse radar transmitting signal[J]. High Power Laser and Particle Beams, 2019, 31: 063002 doi: 10.11884/HPLPB201931.190024
    [3]
    滕振宇, 杨力. 一种更高跳速梳状谱干扰新机制的研究[J]. 系统仿真学报, 2009, 21(19):6190-6194

    Teng Zhenyu, Yang Li. Research of new comb spectrum jamming mechanism with higher speed hopping[J]. Journal of System Simulation, 2009, 21(19): 6190-6194
    [4]
    杨明, 刘超, 郑新. 大功率、高频段电真空器件在雷达技术领域的应用分析[J]. 现代雷达, 2017, 39(4):83-86,91

    Yang Ming, Liu Chao, Zheng Xin. A study on the application of high power and high frequency microwave vacuum devices in radar detection system[J]. Modern Radar, 2017, 39(4): 83-86,91
    [5]
    沈爱国, 姜秋喜. 无载频超宽带雷达的梳状谱干扰技术[J]. 系统工程与电子技术, 2009, 31(1):66-68 doi: 10.3321/j.issn:1001-506X.2009.01.017

    Shen Aiguo, Jiang Qiuxi. Jamming the carrier-free ultra-wideband radar with comb spectrum signals[J]. Systems Engineering and Electronics, 2009, 31(1): 66-68 doi: 10.3321/j.issn:1001-506X.2009.01.017
    [6]
    宋杰, 张华春, 郑慧芳. 基于微动调制的梳状谱灵巧噪声压制干扰[J]. 雷达科学与技术, 2020, 18(5):531-538,545 doi: 10.3969/j.issn.1672-2337.2020.05.011

    Song Jie, Zhang Huachun, Zheng Huifang. Suppression jamming of comb spectrum smart noise based on micro-motion modulation[J]. Radar Science and Technology, 2020, 18(5): 531-538,545 doi: 10.3969/j.issn.1672-2337.2020.05.011
    [7]
    杨旋, 张友益. 对机载多功能雷达的干扰及其仿真[J]. 舰船电子对抗, 2011, 34(5):24-26,46 doi: 10.3969/j.issn.1673-9167.2011.05.007

    Yang Xuan, Zhang Youyi. Jamming to airborne multi-function radar and its simulation[J]. Shipboard Electronic Countermeasure, 2011, 34(5): 24-26,46 doi: 10.3969/j.issn.1673-9167.2011.05.007
    [8]
    Fang Jinyong, Wu Jiangniu, Huang Huijun, et al. Path encoding pulse compression for obtaining novel HPM with ultrahigh repetition frequency[J]. Laser and Particle Beams, 2021: 3259950.
    [9]
    Kumlu D, Erer I. Improved clutter removal in GPR by robust nonnegative matrix factorization[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6): 958-962. doi: 10.1109/LGRS.2019.2937749
    [10]
    Liu Songyang, Dong Chunxi, Xu Jin, et al. Analysis of rotating cross-eye jamming[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 939-942. doi: 10.1109/LAWP.2014.2387423
    [11]
    Paik H, Sastry N N, Santiprabha I. Effectiveness of repeat jamming using linear FM interference signal in monopulse receivers[J]. Procedia Computer Science, 2015, 57: 296-304. doi: 10.1016/j.procs.2015.07.489
    [12]
    Li Yuhan, Qi Wei, Deng Zhenmiao, et al. Monopulse instantaneous 3D imaging for wideband radar system[J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 53-67. doi: 10.23919/JSEE.2021.000007
    [13]
    姚昆, 杨霄鹏, 杨栋, 等. 一种多频点干扰信号产生方案[J]. 电子设计工程, 2011, 19(12):127-129,132

    Yao Kun, Yang Xiaopeng, Yang Dong, et al. A multi-frequency generation scheme of interference signal[J]. Electronic Design Engineering, 2011, 19(12): 127-129,132
    [14]
    张逸楠, 王广学, 彭世蕤, 等. 基于无人机集群的近场线性稀疏阵列波束形成研究[J]. 电子与信息学报, 2023, 45(1):181-190

    Zhang Yinan, Wang Guangxue, Peng Shirui, et al. Beamforming research for near-field linear sparse array based on unmanned aerial vehicle swarm[J]. Journal of Electronics and Information, 2023, 45(1): 181-190
    [15]
    张国利, 毕大平, 杨谢. 信道化接收机的梳状干扰效果分析[J]. 电子信息对抗技术, 2013, 28(4):47-50,60 doi: 10.3969/j.issn.1674-2230.2013.04.012

    Zhang Guoli, Bi Daping, Yang Xie. Jamming effect analysis of the channelized receiver with comb spectrum signal[J]. Electronic Information Warfare Technology, 2013, 28(4): 47-50,60 doi: 10.3969/j.issn.1674-2230.2013.04.012
    [16]
    沈爱国, 姜秋喜. LFM-UWB雷达的梳状谱干扰技术[J]. 现代防御技术, 2008, 36(3):105-108 doi: 10.3969/j.issn.1009-086X.2008.03.025

    Shen Aiguo, Jiang Qiuxi. Jamming the LFM-UWB radar with comb spectrum signals[J]. Modern Defence Technology, 2008, 36(3): 105-108 doi: 10.3969/j.issn.1009-086X.2008.03.025
    [17]
    Yavuz M E, Teixeira F L. Frequency dispersion compensation in time reversal techniques for UWB electromagnetic waves[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 233-237. doi: 10.1109/LGRS.2005.846835
    [18]
    Drikas Z B, Addissie B D, Mendez V M, et al. Ultrawideband pulse compression in a single-port cavity using time-reversal techniques[J]. IEEE Microwave and Wireless Components Letters, 2022, 32(2): 177-180. doi: 10.1109/LMWC.2021.3118643
    [19]
    Fang Wenrao, Huang Wenhua, Huang Wenhui, et al. X-band high-efficiency high-power GaN power amplifier based on edge-triggered gate modulation[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(9): 884-887. doi: 10.1109/LMWC.2020.3013146
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (308) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return