Volume 35 Issue 12
Nov.  2023
Turn off MathJax
Article Contents
Sun Zheng, Xin Tianmu. Optimization design of photocathode injector assisted by deep Gaussian process[J]. High Power Laser and Particle Beams, 2023, 35: 124004. doi: 10.11884/HPLPB202335.230097
Citation: Sun Zheng, Xin Tianmu. Optimization design of photocathode injector assisted by deep Gaussian process[J]. High Power Laser and Particle Beams, 2023, 35: 124004. doi: 10.11884/HPLPB202335.230097

Optimization design of photocathode injector assisted by deep Gaussian process

doi: 10.11884/HPLPB202335.230097
  • Received Date: 2023-04-21
  • Accepted Date: 2023-10-29
  • Rev Recd Date: 2023-10-29
  • Available Online: 2023-11-16
  • Publish Date: 2023-12-15
  • The Circular Electron-Positron Collider (CEPC) has high requirements for bunch charge, transverse emittance, and longitudinal length at the injector exit. Consequently, designing a high-performance electron gun and injector has become a challenge. To design an injector that meets the targets, many nonlinear and mutually coupled parameters need to be considered simultaneously. Therefore, we propose a method of searching in a high-dimensional parameter space using a multi-objective genetic algorithm to optimize the normalized transverse emittance and longitudinal bunch length, thus to maximize the performance of the electron gun. Since the full simulation of bunch transportaion with spacecharge effect is extremly time consuming, we adopted the deep Gaussian process as an surrogate model to solve high-dimensional parameter optimization problem. Through the analysis of key factors affecting the evolution of beam transverse and longitudinal phase space, a total of 16 geometric parameters and 10 beam element parameters have been determined in this paper. we present a design optimization for an injector consisting of an L-band radio frequency electron gun, a pair of solenoids, and a traveling wave tube, with an initial charge of 10 nC. After calculating 8000 effective solutions, we acquired a good approximation to the Pareto front between two objectives. The corresponding transverse normalized emittance is 19.8 π·mm·mrad, and the RMS beam length is 1.0 mm. Compared with the design requirement, the transverse normalized emittance is reduced by about 70%.
  • loading
  • [1]
    The CEPC Study Group, Iqbal M. CEPC conceptual design report: volume 1 - accelerator[R]. Beijing: Chinese Academy of Sciences, 2018.
    [2]
    Song Minghao, Huang Xiaobiao, Spentzouris L, et al. Storage ring nonlinear dynamics optimization with multi-objective multi-generation Gaussian process optimizer[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 976: 164273.
    [3]
    Wan Jinyu, Chu P, Jiao Yi. Neural network-based multiobjective optimization algorithm for nonlinear beam dynamics[J]. Physical Review Accelerators and Beams, 2020, 23: 081601. doi: 10.1103/PhysRevAccelBeams.23.081601
    [4]
    Bazarov I V, Sinclair C K. Multivariate optimization of a high brightness dc gun photoinjector[J]. Physical Review Accelerators and Beams, 2005, 8: 034202. doi: 10.1103/PhysRevSTAB.8.034202
    [5]
    Hannon F E, Hernandez-Garcia C. Simulation and optimisation of a 100 mA dc photo-injector[C]//Proceedings of EPAC 2006. 2006: 3550-3552.
    [6]
    Hofler A, Evtushenko P, Krasilnikov M. RF gun optimization study[C]//Proceedings of 2007 IEEE Particle Accelerator Conference. 2007: 1326-1328.
    [7]
    Gulliford C, Bartnik A, Bazarov I, et al. Multiobjective optimization design of an rf gun based electron diffraction beam line[J]. Physical Review Accelerators and Beams, 2017, 20: 033401. doi: 10.1103/PhysRevAccelBeams.20.033401
    [8]
    王程. 高亮度微波电子枪及其前沿技术研究[D]. 上海: 中国科学院大学(中国科学院上海应用物理研究所), 2021

    Wang Cheng. Frontier technology research of high brightness photocathode RF electron gun[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Applied Physics, Chinese Academy of Sciences), 2021
    [9]
    Floettmann K. ASTRA: a space charge tracking algorithm[EB/OL]. http://www.desy.de/~mpyflo/Astra_dokumentation/.
    [10]
    Rao T, Dowell D H. An engineering guide to photoinjectors[DB/OL]. arXiv preprint arXiv: 1403.7539, 2014.
    [11]
    Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
    [12]
    Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601. doi: 10.1109/TEVC.2013.2281535
    [13]
    Rasmussen C E, Williams C K I. Gaussian processes for machine learning[M]. Cambridge: MIT Press, 2006.
    [14]
    Damianou A C, Lawrence N D. Deep Gaussian processes[DB/OL]: arXiv preprint arXiv: 1211.0358, 2013.
    [15]
    Halbach K, Holsinger R F. SUPERFISH-A computer program for evaluation of RF cavities with cylindrical symmetry[R]. Los Alamos: LBL, 1976.
    [16]
    Serafini L, Rosenzweig J B. Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors: mA theory of emittance compensation[J]. Physical Review E, 1997, 55(6): 7565-7590. doi: 10.1103/PhysRevE.55.7565
    [17]
    Gao Jie. On the theory of photocathode rf guns[J]. Chinese Physics C, 2009, 33(4): 306-310. doi: 10.1088/1674-1137/33/4/014
    [18]
    Tian Ye, Cheng Ren, Zhang Xingyi, et al. Techniques for accelerating multi-objective evolutionary algorithms in PlatEMO[C]//Proceedings of 2020 IEEE Congress on Evolutionary Computation. 2020: 1-8.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (209) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return