Volume 35 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
Wang Hang, Wang Yuqin, Zhang Rongzhu. Transmission characteristics of perfect optical vortex beam in slant path atmospheric turbulence[J]. High Power Laser and Particle Beams, 2023, 35: 101005. doi: 10.11884/HPLPB202335.230111
Citation: Wang Hang, Wang Yuqin, Zhang Rongzhu. Transmission characteristics of perfect optical vortex beam in slant path atmospheric turbulence[J]. High Power Laser and Particle Beams, 2023, 35: 101005. doi: 10.11884/HPLPB202335.230111

Transmission characteristics of perfect optical vortex beam in slant path atmospheric turbulence

doi: 10.11884/HPLPB202335.230111
  • Received Date: 2023-05-04
  • Accepted Date: 2023-07-28
  • Rev Recd Date: 2023-07-28
  • Available Online: 2023-08-18
  • Publish Date: 2023-10-08
  • Compared with other vortex beams, the perfect optical vortex (POV) beam has a more stable spatial intensity distribution because the beam radius is independent of the topological charge. In this paper, the transmission characteristics of the POV beam in slant path atmospheric turbulence are studied by means of multi-phase screen method and Fourier transform method. The influence of atmospheric turbulence on beam quality is analyzed by using beam drift and aperture average scintillation index. Then the beam quality of the POV beam and Gaussian vortex beam under the same transmission conditions is compared. The results show that POV beam has better beam stability than Gaussian vortex beam. When the topological load increases or the zenith angle decreases, the ability of POV beam to resist atmospheric turbulence increases. The resistance of POV beam to atmospheric turbulence can be improved by increasing the beam radius without changing the topological charge of the POV beam.
  • loading
  • [1]
    王伟, 李晓记, 任亚萍, 等. 自由空间轨道角动量无线光通信研究进展[J]. 光通信技术, 2019, 43(4):12-17 doi: 10.13921/j.cnki.issn1002-5561.2019.04.003

    Wang Wei, Li Xiaoji, Ren Yaping, et al. Research progress on free space orbital angular momentum wireless optical communication[J]. Optical Communication Technology, 2019, 43(4): 12-17 doi: 10.13921/j.cnki.issn1002-5561.2019.04.003
    [2]
    谢友朋, 张珊, 雷霆, 等. 奇点光束复用光通信(特邀)[J]. 光通信研究, 2018(6):11-20 doi: 10.13756/j.gtxyj.2018.06.002

    Xie Youpeng, Zhang Shan, Lei Ting, et al. Singular optical beams multiplexing optical communication[J]. Study on Optical Communications, 2018(6): 11-20 doi: 10.13756/j.gtxyj.2018.06.002
    [3]
    Lukin V P, Konyaev P A, Sennikov V A. Beam spreading of vortex beams propagating in turbulent atmosphere[J]. Applied Optics, 2012, 51(10): C84-C87. doi: 10.1364/AO.51.000C84
    [4]
    Zhu Kaicheng, Zhou Guoquan, Li Xuguang, et al. Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere[J]. Optics Express, 2008, 16(26): 21315-21320. doi: 10.1364/OE.16.021315
    [5]
    Yüceer M, Eyyuboglu H T, Lukin I P. Scintillations of partially coherent Laguerre Gaussian beams[J]. Applied Physics B, 2010, 101(4): 901-908. doi: 10.1007/s00340-010-4291-4
    [6]
    Gbur G, Tyson R K. Vortex beam propagation through atmospheric turbulence and topological charge conservation[J]. Journal of the Optical Society of America A, 2008, 25(1): 225-230. doi: 10.1364/JOSAA.25.000225
    [7]
    Chen B S, Pu J X. Propagation of Gauss-Bessel beams in turbulent atmosphere[J]. Chinese Physics B, 2009, 18(3): 1033-1039. doi: 10.1088/1674-1056/18/3/032
    [8]
    Kirilenko M S, Porfirev A P, Khonina S N. Comparison of propagation of vortex and non-vortex laser beams in a random medium[C]//Proceedings of the SPIE 10342, Optical Technologies for Telecommunications 2016. 2016: 103420B.
    [9]
    Yue Yang, Yan Yan, Ahmed N, et al. Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber[J]. IEEE Photonics Journal, 2012, 4(2): 535-543. doi: 10.1109/JPHOT.2012.2192474
    [10]
    Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator[J]. Optics Letters, 2013, 38(4): 534-536. doi: 10.1364/OL.38.000534
    [11]
    Wang Le, Jiang Xincheng, Zou Li, et al. Two-dimensional multiplexing scheme both with ring radius and topological charge of perfect optical vortex beam[J]. Journal of Modern Optics, 2019, 66(1): 87-92. doi: 10.1080/09500340.2018.1512669
    [12]
    Yang Chunyong, Lan Yue, Jiang Xiaoyu, et al. Beam-holding property analysis of the perfect optical vortex beam transmitting in atmospheric turbulence[J]. Optics Communications, 2020, 472: 125879. doi: 10.1016/j.optcom.2020.125879
    [13]
    Series P. Propagation data and prediction methods required for the design of Earth-space telecommunication systems[J]. Recommendation ITU-R P. 618-12, 2015.
    [14]
    Zhu Fuquan, Huang Sujuan, Shao Wei, et al. Free-space optical communication link using perfect vortex beams carrying orbital angular momentum (OAM)[J]. Optics Communications, 2017, 396: 50-57. doi: 10.1016/j.optcom.2017.03.023
    [15]
    钱仙妹, 朱文越, 饶瑞中. 非均匀湍流路径上光传播数值模拟的相位屏分布[J]. 物理学报, 2009, 58(9):6633-6639 doi: 10.7498/aps.58.6633

    Qian Xianmei, Zhu Wenyue, Rao Ruizhong. Phase screen distribution for simulating laser propagation along an inhomogeneous atmospheric path[J]. Acta Physica Sinica, 2009, 58(9): 6633-6639 doi: 10.7498/aps.58.6633
    [16]
    Fleck Jr J A, Morris J R, Feit M D. Time-dependent propagation of high energy laser beams through the atmosphere[J]. Applied Physics, 1976, 10(2): 129-160. doi: 10.1007/BF00896333
    [17]
    Ke Xizheng, Lei Sichen. Spatial light coupled into a single-mode fiber by a Maksutov–Cassegrain antenna through atmospheric turbulence[J]. Applied Optics, 2016, 55(15): 3897-3902. doi: 10.1364/AO.55.003897
    [18]
    Siegman A E. New developments in laser resonators[C]. Proceedings of the SPIE 1224, Optical Resonators. 1990: 2-14.
    [19]
    陈鸣, 高太长, 刘磊, 等. 非Kolmogorov湍流相位屏仿真及对光束传输模拟的影响[J]. 强激光与粒子束, 2017, 29:091008 doi: 10.11884/HPLPB201729.170052

    Chen Ming, Gao Taichang, Liu Lei, et al. Influence of non-Kolmogorov turbulence phase screen based on equivalent structure constant on beam quality in transmission[J]. High Power Laser and Particle Beams, 2017, 29: 091008 doi: 10.11884/HPLPB201729.170052
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (476) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return