Volume 35 Issue 12
Nov.  2023
Turn off MathJax
Article Contents
Li Yifan, Yang Rui, Xie Peihan, et al. Simulation of terahertz metasurface controlled by light field based on novel perovskite materials[J]. High Power Laser and Particle Beams, 2023, 35: 129001. doi: 10.11884/HPLPB202335.230128
Citation: Li Yifan, Yang Rui, Xie Peihan, et al. Simulation of terahertz metasurface controlled by light field based on novel perovskite materials[J]. High Power Laser and Particle Beams, 2023, 35: 129001. doi: 10.11884/HPLPB202335.230128

Simulation of terahertz metasurface controlled by light field based on novel perovskite materials

doi: 10.11884/HPLPB202335.230128
  • Received Date: 2023-05-11
  • Accepted Date: 2023-09-22
  • Rev Recd Date: 2023-10-13
  • Available Online: 2023-11-14
  • Publish Date: 2023-12-15
  • In recent years, the terahertz control technology has shown a good application prospect in the fields of detection, imaging, wireless network communication and so on, and has attracted the attention of scholars at home and abroad. To achieve efficient terahertz regulation, an efficient and low-cost material is urgently needed. New perovskite materials have become one of the most promising candidates for high stability optoelectronic devices due to their excellent photoelectric properties. At the same time, perovskite has the advantages of simple preparation process and mass production, thus it is very suitable to be used as the active material of terahertz metamaterials. The properties of active materials can be changed by external excitation, and terahertz waves can be adjusted flexibly. Therefore, this paper selects a new perovskite material with external optical field to regulate terahertz waves, and analyzes the influence of two states-before the optical field action (insulating state) and after the optical field action (metallic state) on the amplitude and phase of the unit structure in the wide band of terahertz. A perovskite-based 1bit terahertz coding metasurface structure with flexible light field regulation was designed. The structure is composed of organic and inorganic hybrid perovskite CH3NH3PbI3 (MAPbI3), polyimide and aluminum. The simulation results of CST show that the metasurface structure can realize 180° phase difference change of wide spectrum (0.1, 1, 2, 6 THz) terahertz waves under the control of light field. After the design of metasurface coding structure, the same coding sequence can realize the transformation of far-field beam. The results show that the encoding metasurface based on optical field manipulation of perovskite materials provides a new idea for realizing flexible terahertz wave regulation, and has great application potential in terahertz communication, security check, biomedical imaging and so on.
  • loading
  • [1]
    范玉衡, 杨闯, 彭木根. 感知协同太赫兹多天线移动通信: 原理、现状与展望[J]. 移动通信, 2023, 47(3):84-91

    Fan Yuheng, Yang Chuang, Peng Mugen. Sensing-aided terahertz MIMO mobile communication: Principle, status and prospect[J]. Mobile Communications, 2023, 47(3): 84-91
    [2]
    邓新新, 刘炳伟, 刘竞博, 等. 太赫兹超材料生物检测应用研究进展[J]. 太赫兹科学与电子信息学报, 2022, 20(11):1113-1122

    Deng Xinxin, Liu Bingwei, Liu Jingbo, et al. Research progress of terahertz metamaterials in biological detection applications[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20(11): 1113-1122
    [3]
    吕钟鸣, 吴静珠, 杨佳滢, 等. 太赫兹衰减全反射技术对花生冻伤快速判别研究[J]. 食品安全质量检测学报, 2023, 14(5):23-29

    Lü Zhongming, Wu Jingzhu, Yang Jiaying, et al. Rapid identification of peanut frostbite based on terahertz attenuated total reflection technique[J]. Journal of Food Safety and Quality, 2023, 14(5): 23-29
    [4]
    姚建铨, 李杰, 张雅婷, 等. 太赫兹波调控技术: 驾驭太赫兹之光[J]. 自然杂志, 2023, 45(1):1-16

    Yao Jianquan, Li Jie, Zhang Yating, et al. Technology for terahertz wave manipulation: harnessing the light of terahertz[J]. Chinese Journal of Nature, 2023, 45(1): 1-16
    [5]
    刘峻峰, 刘硕, 傅晓建, 等. 太赫兹信息超材料与超表面[J]. 雷达学报, 2018, 7(1):46-55

    Liu Junfeng, Liu Shuo, Fu Xiaojian, et al. Terahertz information metamaterials and metasurfaces[J]. Journal of Radars, 2018, 7(1): 46-55
    [6]
    梅中磊, 张黎, 崔铁军. 电磁超材料研究进展[J]. 科技导报, 2016, 34(18):27-39

    Mei Zhonglei, Zhang Li, Cui Tiejun. Recent advances on metamaterials[J]. Science & Technology Review, 2016, 34(18): 27-39
    [7]
    张磊, 刘硕, 崔铁军. 电磁编码超材料的理论与应用[J]. 中国光学, 2017, 10(1):1-12

    Zhang Lei, Liu Shuo, Cui Tiejun. Theory and application of coding metamaterials[J]. Chinese Optics, 2017, 10(1): 1-12
    [8]
    Consales M, del Villar I, Matias I R, et al. Lab on fiber technology towards advanced and multifunctional point-of-care platforms for precision medicine[M]//Narayan R. Encyclopedia of Sensors and Biosensors. Elsevier, 2023, 4: 504-527.
    [9]
    Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    [10]
    张磊, 陈晓晴, 郑熠宁, 等. 电磁超表面与信息超表面[J]. 电波科学学报, 2021, 36(6):817-828

    Zhang Lei, Chen Xiaoqing, Zheng Yining, et al. Electromagnetic metasurfaces and information metasurfaces[J]. Chinese Journal of Radio Science, 2021, 36(6): 817-828
    [11]
    李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3):255-275,376

    Li Xiong, Ma Xiaoliang, Luo Xiangang. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255-275,376
    [12]
    Cui Tiejun, Qi Meiqing, Wan Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science & Applications, 2014, 3(10): e218.
    [13]
    高峰, 朱晨岳, 李景悦, 等. 基于氧化铟锡主动超表面的相位调制[J]. 激光与光电子学进展, 2022, 59:0405001

    Gao Feng, Zhu Chenyue, Li Jingyue, et al. ITO-based active metasurfaces with phase tunability[J]. Laser & Optoelectronics Progress, 2022, 59: 0405001
    [14]
    Zhang Xin’ge, Jiang Weixiang, Jiang Haolin, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics, 2020, 3(3): 165-171. doi: 10.1038/s41928-020-0380-5
    [15]
    韩飞, 王玲玲, 林媛, 等. 有机硅在钙钛矿太阳能电池中的应用[J]. 陶瓷学报, 2023, 44(1):12-27

    Han Fei, Wang Lingling, Lin Yuan, et al. Application of organosilicon in perovskite solar cells[J]. Journal of Ceramics, 2023, 44(1): 12-27
    [16]
    姚鑫, 丁艳丽, 张晓丹, 等. 钙钛矿太阳电池综述[J]. 物理学报, 2015, 64:038805 doi: 10.7498/aps.64.038805

    Yao Xin, Ding Yanli, Zhang Xiaodan, et al. A review of the perovskite solar cells[J]. Acta Physica Sinica, 2015, 64: 038805 doi: 10.7498/aps.64.038805
    [17]
    陆新荣, 赵颖, 刘建, 等. ABX3型钙钛矿光伏材料的结构与性质调控[J]. 无机化学学报, 2015, 31(9):1678-1686

    Lu Xinrong, Zhao Ying, Liu Jian, et al. Modulation of the structure and property of ABX3 type perovskite photovoltaic material[J]. Chinese Journal of Inorganic Chemistry, 2015, 31(9): 1678-1686
    [18]
    闫昕, 梁兰菊, 张雅婷, 等. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究[J]. 物理学报, 2015, 64:158101 doi: 10.7498/aps.64.158101

    Yan Xin, Liang Lanju, Zhang Yating, et al. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies[J]. Acta Physica Sinica, 2015, 64: 158101 doi: 10.7498/aps.64.158101
    [19]
    李佳辉, 张雅婷, 李吉宁, 等. 基于二氧化钒的太赫兹编码超表面[J]. 物理学报, 2020, 69:228101 doi: 10.7498/aps.69.20200891

    Li Jiahui, Zhang Yating, Li Jining, et al. Terahertz coding metasurface based vanadium dioxide[J]. Acta Physica Sinica, 2020, 69: 228101 doi: 10.7498/aps.69.20200891
    [20]
    李增霖, 唐华伟, 徐文霞, 等. 太赫兹波束可调谐的编码超表面设计[J]. 电波科学学报, 2021, 36(6):932-937

    Li Zenglin, Tang Huawei, Xu Wenxia, et al. Coding metasurface design for terahertz beam shaping[J]. Chinese Journal of Radio Science, 2021, 36(6): 932-937
    [21]
    Li Jie, Zhang Yating, Li Jining, et al. Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam-Berry coding metasurfaces.[J]. Nanoscale, 2019, 11(12): 5746-5753. doi: 10.1039/C9NR00675C
    [22]
    Wang Hailin, Ma Huifeng, Cui Tiejun. A polarization-modulated information metasurface for encryption wireless communications[J]. Advanced Science, 2022, 9: 2204333. doi: 10.1002/advs.202204333
    [23]
    Li Yifan, Zhang Yating, Li Tengteng, et al. Ultrabroadband, ultraviolet to terahertz, and high sensitivity CH3NH3PbI3 perovskite photodetectors[J]. Nano Letters, 2020, 20(8): 5646-5654. doi: 10.1021/acs.nanolett.0c00082
    [24]
    Wilson J N, Frost J M, Wallace S K, et al. Dielectric and ferroic properties of metal halide perovskites[J]. APL Materials, 2019, 7: 010901. doi: 10.1063/1.5079633
    [25]
    李培, 刘颖, 李鹏, 等. 基于极化旋转超表面的天线RCS减缩方法[J]. 电子信息对抗技术, 2021, 36(5):84-89

    Li Pei, Liu Ying, Li Peng, et al. An antenna RCS reduction method based on polarization conversion meta-surface[J]. Electronic Information Warfare Technology, 2021, 36(5): 84-89
    [26]
    庄亚强, 张晨新, 张小宽, 等. 典型隐身飞机动态RCS仿真及统计分析[J]. 微波学报, 2014, 30(5):17-21

    Zhuang Yaqiang, Zhang Chenxin, Zhang Xiaokuan, et al. Statistical analysis and simulation of typical stealth aircraft dynamic RCS[J]. Journal of Microwaves, 2014, 30(5): 17-21
    [27]
    李勇峰, 张介秋, 屈绍波, 等. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证[J]. 物理学报, 2014, 63:084103 doi: 10.7498/aps.63.084103

    Li Yongfeng, Zhang Jieqiu, Qu Shaobo, et al. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction[J]. Acta Physica Sinica, 2014, 63: 084103 doi: 10.7498/aps.63.084103
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (895) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return