Volume 35 Issue 11
Oct.  2023
Turn off MathJax
Article Contents
Si Haoxuan, Xu Hao, Du Huiyao, et al. Areal density measurement technology for metal foils based on X-ray bent crystal imaging[J]. High Power Laser and Particle Beams, 2023, 35: 112001. doi: 10.11884/HPLPB202335.230161
Citation: Si Haoxuan, Xu Hao, Du Huiyao, et al. Areal density measurement technology for metal foils based on X-ray bent crystal imaging[J]. High Power Laser and Particle Beams, 2023, 35: 112001. doi: 10.11884/HPLPB202335.230161

Areal density measurement technology for metal foils based on X-ray bent crystal imaging

doi: 10.11884/HPLPB202335.230161
  • Received Date: 2023-05-31
  • Accepted Date: 2023-10-11
  • Rev Recd Date: 2023-10-11
  • Available Online: 2023-10-19
  • Publish Date: 2023-11-11
  • In view of the measurement requirements of uniformity and areal density parameters of target metal foils, a non-destructive testing technology for high-Z metal foils by obtaining thin film X-ray transmittance and its spatial distribution through a toroidal crystal focusing type X-ray monochromatic imaging device is proposed. This technology not only effectively improves the accuracy of areal density measurement by high-throughput and high-monochromatic imaging, but also realizes high spatial resolution evaluation of thin film uniformity. This paper carries out in-depth research from the aspects of overall scheme design, component preparation and test experiment, and evaluates the influence of various possible factors on measurement uncertainty. The developed toroidal crystal imaging system achieves micro-region resolution better than 5 μm within millimeter scale for 20 keV-level high-energy X-rays, and spectral resolution reaches several eV. The feasibility of the developed technology is verified by surface density measurement experiment of foam gold sample, and relative uncertainty of areal density measurement better than 2% is obtained. This paper provides a new measurement technology for precise non-destructive testing of high-Z target materials for laser inertial confinement fusion, which is also expected to be applied to other fields that require large field of view and high spatial spectral resolution imaging.
  • loading
  • [1]
    唐永建, 张林, 吴卫东, 等. ICF靶材料和靶制备技术研究进展[J]. 强激光与粒子束, 2008, 20(11):1773-1786

    Tang Yongjian, Zhang Lin, Wu Weidong, et al. Research progress on ICF target materials and target fabrication technology[J]. High Power Laser and Particle Beams, 2008, 20(11): 1773-1786
    [2]
    高莎莎, 吴小军, 何智兵, 等. 激光惯性约束聚变靶制备技术研究进展[J]. 强激光与粒子束, 2020, 32:032001 doi: 10.11884/HPLPB202032.200039

    Gao Shasha, Wu Xiaojun, He Zhibing, et al. Research progress of fabrication techniques for laser inertial confinement fusion target[J]. High Power Laser and Particle Beams, 2020, 32: 032001 doi: 10.11884/HPLPB202032.200039
    [3]
    Rong Chunming, He X, Meng J, et al. Nuclear microbeam analysis of ICF target material made by GDP technique[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2015, 348: 178-182.
    [4]
    Dong Yalun, Yang Lihong, Jin Ziqi, et al. Experimental and numerical analysis of ballistic impact response of fiber-reinforced composite/metal composite target[J]. Composite Structures, 2022, 294: 115776. doi: 10.1016/j.compstruct.2022.115776
    [5]
    Stoner J O Jr, Borgardt J, Ashbaugh M D, et al. Areal-density measurement of 12C and 13C foils and layers using the (3He, p) nuclear reaction[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 480(1): 133-136.
    [6]
    Fukuchi T, Yamamoto S, Kataoka J, et al. Beta-ray imaging system with γ-ray coincidence for multiple-tracer imaging[J]. Medical Physics, 2020, 47(2): 587-596. doi: 10.1002/mp.13947
    [7]
    Ashworth C. Boosting β-ray detection[J]. Nature Reviews Materials, 2020, 5: 640. doi: 10.1038/s41578-020-0231-z
    [8]
    Yi Shengzhen, Si Haoxuan, Jiang Li, et al. Optical and multilayer design of two-energy sixteen-channel Kirkpatrick-Baez microscope for ultrafast plasma diagnostics[C]//Proceedings of SPIE 11909, Tenth International Symposium on Ultrafast Phenomena and Terahertz Waves. 2021: 11909S.
    [9]
    伊圣振, 司昊轩, 黄秋实, 等. 激光惯性约束聚变X射线诊断用多通道Kirkpatrick-Baez成像系统研究进展[J]. 光学学报, 2022, 42:1134007

    Yi Shengzhen, Si Haoxuan, Huang Qiushi, et al. Research progress of multi-channel Kirkpatrick-Baez microscope for X-ray diagnostics in laser inertial confinement fusion[J]. Acta Optica Sinica, 2022, 42: 1134007
    [10]
    Yi Shengzhen, Si Haoxuan, Fang Ke, et al. High-resolution dual-energy sixteen-channel Kirkpatrick-Baez microscope for ultrafast laser plasma diagnostics[J]. Journal of the Optical Society of America B, 2022, 39(3): A61-A67. doi: 10.1364/JOSAB.444438
    [11]
    Si Haoxuan, Dong Jiaqin, Fang Zhiheng, et al. High-resolution X-ray monochromatic imaging for laser plasma diagnostics based on toroidal crystal[J]. Plasma Science and Technology, 2023, 25: 015601.
    [12]
    Mamouei M, Budidha K, Baishya N, et al. An empirical investigation of deviations from the Beer-Lambert law in optical estimation of lactate[J]. Scientific Reports, 2021, 11: 13734. doi: 10.1038/s41598-021-92850-4
    [13]
    Linstrom P J, Mallard W G. NIST chemistry WebBook[D/OL]. Gaithersburg: National Institute of Standards and Technology, 2020[2023-04-07]. https://webbook.nist.gov/chemistry/.
    [14]
    Jiang Chenglong, Xu Jie, Mu Baozhong, et al. Four-channel toroidal crystal X-ray imager for laser-produced plasmas[J]. Optics Express, 2021, 29(4): 6133-6146. doi: 10.1364/OE.415537
    [15]
    姚童, 黎淼, 施军, 等. 钛靶X射线超环面晶体衍射高分辨率聚焦诊断技术研究[J]. 中国激光, 2021, 48:2103002 doi: 10.3788/CJL202148.2103002

    Yao Tong, Li Miao, Shi Jun, et al. High-resolution focusing diagnosis technology on Ti-target X-ray diffraction using toroidal crystals[J]. Chinese Journal of Lasers, 2021, 48: 2103002 doi: 10.3788/CJL202148.2103002
    [16]
    Schollmeier M S, Loisel G P. Systematic search for spherical crystal X-ray microscopes matching 1-25 keV spectral line sources[J]. Review of Scientific Instruments, 2016, 87: 123511. doi: 10.1063/1.4972248
    [17]
    Klementiev K, Chernikov R. Powerful scriptable ray tracing package XRT[C]//Proceedings of SPIE 9209, Advances in Computational Methods for X-Ray Optics III. 2014: 92090A.
    [18]
    JJF 1059.1-2012, 测量不确定度评定与表示[S

    JJF1059.1-2012, Evaluation and expression of uncertaintv in measurement[S
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views (178) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return