Volume 35 Issue 11
Oct.  2023
Turn off MathJax
Article Contents
Wang Zhanliang, Wang Huanyu, He Ziyuan, et al. S band radial beam coaxial grating backward wave oscillator[J]. High Power Laser and Particle Beams, 2023, 35: 113001. doi: 10.11884/HPLPB202335.230198
Citation: Wang Zhanliang, Wang Huanyu, He Ziyuan, et al. S band radial beam coaxial grating backward wave oscillator[J]. High Power Laser and Particle Beams, 2023, 35: 113001. doi: 10.11884/HPLPB202335.230198

S band radial beam coaxial grating backward wave oscillator

doi: 10.11884/HPLPB202335.230198
Funds:  National Key R&D Program (G072022YFF0707602); Guangdong Key R&D Program (2021B0101300003)
More Information
  • Corresponding author: Wang Zhanliang, 46969449@qq.com
  • Received Date: 2023-06-28
  • Accepted Date: 2023-10-23
  • Rev Recd Date: 2023-10-20
  • Available Online: 2023-11-02
  • Publish Date: 2023-11-11
  • High power microwave devices are investigated extensively, because of their potential applications, such as advanced radars, electromagnetic warfare systems. However, low efficiency, enormous volume, huge weight and short lifetime limit their applications. In this paper, a coaxial grating slow wave structure backward wave oscillator (BWO) driven by radial beam is proposed. The focusing system is eliminated in the particle in cell simulation, which can reduce the volume and the power loss in practice. The lifetime of the BWO can also be improved with the thermionic radial beam cathode instead of the explosive emission cathode. After optimization, the BWO driven by 460 kV, 6 kA radial beam can produce 1.2 GW at frequency 3.8 GHz, with the efficiency of 43.5%.

  • loading
  • [1]
    Zhou Chuanming, Liu Guozhi, Liu Yonggui, et al. High-power microwave sources[M]. Beijing: Atomic Energy Press, 2007.
    [2]
    Booske J H, Dobbs R J, Joye C D, et al. Vacuum electronic high power terahertz sources[J]. IEEE Trans Terahertz Sci Technol, 2011, 1(1): 54-75. doi: 10.1109/TTHZ.2011.2151610
    [3]
    Wang Zhanliang, Gong Yubin, Wei Yanyu, et al. High-power millimeter-wave BWO driven by sheet electron beam[J]. IEEE Trans Electron Devices, 2013, 60(1): 471-477. doi: 10.1109/TED.2012.2226587
    [4]
    Zhang Yabin, Gong Yubin, Wang Zhanliang, et al. Study of high-power Ka-band rectangular double-grating sheet beam BWO[J]. IEEE Trans Plasma Sci, 2014, 42(6): 1502-1508. doi: 10.1109/TPS.2014.2301719
    [5]
    Liu Zhenbang, Huang Hua, Jin Xiao, et al. Investigation of an X-band pulse high-power high-gain coaxial multibeam relativistic klystron amplifier[J]. IEEE Trans Electron Devices, 2019, 66(1): 722-728. doi: 10.1109/TED.2018.2879193
    [6]
    Xiao Renzhen, Chen Changhua, Sun Jun, et al. A High-power high-efficiency klystronlike relativistic backward wave oscillator with a dual-cavity extractor[J]. Appl Phys Lett, 2011, 98: 101502. doi: 10.1063/1.3562612
    [7]
    Wang Zhanliang, Xu Xiong, Gong Yubin, et al. Simulation on W-band sheet beam rectangular waveguide grating backward-wave oscillator[J]. High Power Laser and Particle Beams, 2015, 27: 083005. doi: 10.11884/HPLPB201527.083005
    [8]
    Zhang Jiande, Ge Xingjun, Zhang Jun, et al. Research activities on high-power microwave sources in national university of defense technology of China[C]//IEEE Pulsed Power Conference. 2015: 1-20.
    [9]
    Klimov A I, Kurkan I K, Polevin S D, et al. A multigigawatt X-Band relativistic backward wave oscillator with a modulating resonant reflector[J]. Tech Phys Lett, 2008, 34(3): 235-237. doi: 10.1134/S1063785008030176
    [10]
    Hahn K, Schamiloglu E. Long-pulse relativistic backward wave oscillator operation utilizing a disk cathode[C]//28th IEEE International Conference on Plasma Science and 13th IEEE International Pulsed Power Conference. 2001: 1618-1621.
    [11]
    Hegeler F, Schamiloglu E, Korovin S D, et al. Recent advances in the study of a long pulse relativistic backward wave oscillator[C]//Proceedings of the 12th IEEE International Pulsed Power Conference. 1999: 825-828.
    [12]
    Agee F J. Evolution of pulse shortening research in narrow band, high power microwave sources[J]. IEEE Trans Plasma Sci, 1998, 26(3): 235-245. doi: 10.1109/27.700749
    [13]
    Gunin A V, Landl V F, Korovin S D, et al. Experimental studies of long-lifetime cold cathodes for high-power microwave oscillators[J]. IEEE Trans Plasma Sci, 2000, 28(3): 537-541. doi: 10.1109/27.887668
    [14]
    Liu Zhenbang, Huang Hua, Jin Xiao, et al. High power operation of an X-band coaxial multi-beam relativistic klystron amplifier[J]. Phys Plasmas, 2013, 20: 113101. doi: 10.1063/1.4825357
    [15]
    Jiang Peijie, Li Zhenghong, Wu Yang. Operating characteristics of an S-band relativistic backward wave oscillator with low magnetic field[J]. High Power Laser and Particle Beams, 2019, 31: 033001. doi: doi:10.11884/HPLPB201931.190010
    [16]
    Konoplev I V, McGrane P, He W, et al. Experimental study of coaxial free-electron maser based on two-dimensional distributed feedback[J]. Phys Rev Lett, 2006, 96: 035002. doi: 10.1103/PhysRevLett.96.035002
    [17]
    Gan Yanqing, Huang Hua, Lei Lurong, et al. Experimental investigation on an S-band relativistic klystron oscillator[J]. High Power Laser and Particle Beams, 2008, 20(5): 815-818.
    [18]
    Parson J M, Mankowski J J, Dickens J C, et al. Imaging of explosive emission cathode and anode plasma in a vacuum-sealed vircator high-power microwave source at 250 A/cm2[J]. IEEE Trans Plasma Sci, 2014, 42(10): 2592-2593. doi: 10.1109/TPS.2014.2331688
    [19]
    Ma Qiaosheng. A novel efficient vircator[J]. High Power Laser Part Beams, 2015, 27: 053005. doi: 10.3788/HPLPB20152705.53005
    [20]
    Qin Fen, Wang Dong, Chen Daibing, et al. Rigorous analysis of high-frequency characteristics of higher-order depressed MILO slow wave structure[J]. High Power Laser and Particle Beams, 2013, 25(s): 119-123. doi: 10.3788/HPLPB2013250s.0119
    [21]
    Dang Fangchao, Zhang Xiaoping, Zhong Huihuang, et al. A small-signal theory for the radial-line relativistic klystron amplifier[J]. J Appl Phys, 2017, 121: 083302. doi: 10.1063/1.4977065
    [22]
    Dang Fangchao, Zhang Xiaoping, Zhang Jun, et al. Experimental demonstration of a Ku-band radial-line relativistic klystron oscillator based on transition radiation[J]. J Appl Phys, 2017, 121: 123305. doi: 10.1063/1.4979309
    [23]
    Konoplev I V, Fisher L, Cross A W, et al. Surface wave Cherenkov maser based on a periodic lattice[J]. Appl Phys Lett, 2010, 96: 261101. doi: 10.1063/1.3456618
    [24]
    Hofmann I. Stability of anisotropic beams with space charge[J]. Phys Rev E, 1998, 57(4): 4713-4724. doi: 10.1103/PhysRevE.57.4713
    [25]
    Humphries S, Russell S, Carlsten B, et al. Focusing of high-perveance planar electron beams in a miniature wiggler magnet array[J]. IEEE Trans Plasma Sci, 2005, 33(2): 882-891. doi: 10.1109/TPS.2005.845088
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (216) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return