Volume 36 Issue 2
Jan.  2024
Turn off MathJax
Article Contents
Wang Dongxing, Huang Maomao, Wu Wanfeng. Design and simulation of a fast corrector magnet power supply[J]. High Power Laser and Particle Beams, 2024, 36: 025015. doi: 10.11884/HPLPB202436.230239
Citation: Wang Dongxing, Huang Maomao, Wu Wanfeng. Design and simulation of a fast corrector magnet power supply[J]. High Power Laser and Particle Beams, 2024, 36: 025015. doi: 10.11884/HPLPB202436.230239

Design and simulation of a fast corrector magnet power supply

doi: 10.11884/HPLPB202436.230239
  • Received Date: 2023-07-30
  • Accepted Date: 2023-11-04
  • Rev Recd Date: 2023-11-04
  • Available Online: 2023-11-15
  • Publish Date: 2024-01-12
  • The power supply for fast corrector is an important type of equipment in light sources and accelerators. With the improvement of the performance of the light source, the accelerator has put forward higher requirements for the performance of the fast corrector and their corresponding power supply. To meet the requirements of the power supply for fast corrector and simplify their design process, the research of control strategy and simulation about power supply for the fast corrector is conducted. This paper proposes a way which uses the PI control plus second-order phase compensation as the control strategy of the power supply for fast corrector. For improving the phase margin of the power supply system, Bode diagram is used to design the phase compensation parameters of the power supply fast corrector. This method not only ensures that the power supply system works in the deep negative feedback state, but also simplifies the process of parameter calculation about phase compensation. To verify the correctness and effectiveness of the control strategy, this paper proposes a simulation method based on the transfer function of switching power supply which uses voltage-controlled voltage source instead of switching devices. The simulation results verify the feasibility and effectiveness of the above control strategies, and verify the effectiveness and efficiency of the above simulation methods.
  • loading
  • [1]
    上海硬X射线自由电子激光装置正式开工建设[J]. 核技术, 2018, 41(5): 99

    Construction of Shanghai high repetition rate X-ray free electron laser and extreme light facility (SHINE) officially started[J]. Nuclear Techniques, 2018, 41(5): 99
    [2]
    Wang D. SHINE: Shanghai high rep-rate XFEL and extreme light facility[C]//International Computational Accelerator Physics Conference. 2018.
    [3]
    吴旭. 衍射极限储存环光源模拟调试研究[D]. 上海: 中国科学院上海应用物理研究所, 2022: 21-23

    Wu Xu. Commissioning simulations of diffraction limited storage ring light source[D]. Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2022: 21-23
    [4]
    尚雷, 尚风雷, 孙振彪, 等. 先进同步辐射光源特种电源概述[J]. 强激光与粒子束, 2019, 31:040002 doi: 10.11884/HPLPB201931.190044

    Shang Lei, Shang Fenglei, Sun Zhenbiao, et al. Overview of special power supplies for advanced synchrotron radiation source[J]. High Power Laser and Particle Beams, 2019, 31: 040002 doi: 10.11884/HPLPB201931.190044
    [5]
    王晓俊. 加速器磁铁电源解析模型最优控制方法[D]. 兰州: 中国科学院近代物理研究所, 2020: 9-10

    Wang Xiaojun. Analytic modeling optimal control method of power supply for accelerator magnet[D]. Lanzhou: Institute of Modern Physics, Chinese Academy of Sciences, 2020: 9-10
    [6]
    杨新华, 王永强, 李继强, 等. 基于SSOGI-RLSMC联合算法的加速器电源纹波抑制[J]. 原子核物理评论, 2021, 38(1):45-51 doi: 10.11804/NuclPhysRev.38.2020042

    Yang Xinhua, Wang Yongqiang, Li Jiqiang, et al. Accelerator power ripple suppression based on SSOGI-RLSMC combined algorithm[J]. Nuclear Physics Review, 2021, 38(1): 45-51 doi: 10.11804/NuclPhysRev.38.2020042
    [7]
    卢军祥, 马保慧, 柳恒敏, 等. 粒子加速器电源PID控制方式的改进型研究与应用[J]. 电气传动自动化, 2021, 43(3):17-21,42 doi: 10.3969/j.issn.1005-7277.2021.03.004

    Lu Junxiang, Ma Baohui, Liu Hengmin, et al. A research and application of improved PID control mode for particle accelerator power supply[J]. Electric Drive Automation, 2021, 43(3): 17-21,42 doi: 10.3969/j.issn.1005-7277.2021.03.004
    [8]
    Shao Zhuoxia, Liu Peng, Zhang Haiyan, et al. Research on a multilevel corrector magnet power supply based on a buck cascade circuit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 953: 163083.
    [9]
    周兴文. 基于BBO算法的加速器电源数字控制器的设计与实现[D]. 兰州: 兰州大学, 2020: 22-41

    Zhou Xingwen. Design and implementation of digital controller for accelerator power supply based on BBO algorithm[D]. Lanzhou: Lanzhou University, 2020: 22-41
    [10]
    疏坤, 龙锋利, 韩超. 加速器磁铁稳流电源的自适应型控制器设计[J]. 原子能科学技术, 2017, 51(6):1116-1122 doi: 10.7538/yzk.2017.51.06.1116

    Shu Kun, Long Fengli, Han Chao. Self-adaptive controller design for accelerator stabilized magnet power supply[J]. Atomic Energy Science and Technology, 2017, 51(6): 1116-1122 doi: 10.7538/yzk.2017.51.06.1116
    [11]
    Song B M, Wang Ju. Mathematical modeling and analysis of a wide bandwidth bipolar power supply for the fast correctors in the aps upgrade controller[C]//Proceedings of the 6th International Particle Accelerator Conference. 2015: 3264-3266.
    [12]
    代天立, 张海燕, 邵琢瑕, 等. 合肥光源小功率直流磁铁电源的研究[J]. 强激光与粒子束, 2017, 29:065103 doi: 10.11884/HPLPB201729.160547

    Dai Tianli, Zhang Haiyan, Shao Zhuoxia, et al. Research on NSRL-HLS low power DC magnet power supply[J]. High Power Laser and Particle Beams, 2017, 29: 065103 doi: 10.11884/HPLPB201729.160547
    [13]
    Liu Kuobin, Liu Chenyao, Wang Baosheng, et al. Reliability assessment and improvement for a fast corrector power supply in TPS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 896: 53-59.
    [14]
    Belikov O V, Kozak V R. A family of precision power supplies for corrector magnets of the European X-ray free-electron laser[J]. Instruments and Experimental Techniques, 2018, 61(5): 707-712. doi: 10.1134/S0020441218040152
    [15]
    刘鹏, 龙锋利, 李洋, 等. 高能同步辐射光源储存环快校正磁铁电源设计[J]. 原子能科学技术, 2020, 54(11):2252-2257

    Liu Peng, Long Fengli, Li Yang, et al. Design of fast corrector magnet power supply for HEPS storage ring[J]. Atomic Energy Science and Technology, 2020, 54(11): 2252-2257
    [16]
    Liu Peng, Wang Xu, Long Fengli. Fast corrector power supply design for HEPS[J]. Radiation Detection Technology and Methods, 2020, 4(1): 56-62. doi: 10.1007/s41605-019-0149-4
    [17]
    王爽, 高朝晖, 陈思宇, 等. 基于Simulink的同步发电机仿真代数环问题研究[J]. 系统仿真学报, 2022, 34(3):482-489 doi: 10.16182/j.issn1004731x.joss.20-0805

    Wang Shuang, Gao Zhaohui, Chen Siyu, et al. Research on algebraic loop of synchronous generator simulation based on Simulink[J]. Journal of System Simulation, 2022, 34(3): 482-489 doi: 10.16182/j.issn1004731x.joss.20-0805
    [18]
    张俊峰. 原油换热网络Simulink动态仿真中提高运行速度的问题[J]. 系统仿真技术, 2012, 8(4):321-326 doi: 10.3969/j.issn.1673-1964.2012.04.011

    Zhang Junfeng. Improve the convergent speed in oil heat exchanger networks Simulink dynamic simulation[J]. System Simulation Technology, 2012, 8(4): 321-326 doi: 10.3969/j.issn.1673-1964.2012.04.011
    [19]
    耿华, 杨耕. 控制系统仿真的代数环问题及其消除方法[J]. 电机与控制学报, 2006, 10(6):632-635 doi: 10.3969/j.issn.1007-449X.2006.06.020

    Geng Hua, Yang Geng. Algebraic loop problems in simulations of control systems and the methods to avoid it[J]. Electric Machines and Control, 2006, 10(6): 632-635 doi: 10.3969/j.issn.1007-449X.2006.06.020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article views (256) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return