Volume 36 Issue 3
Feb.  2024
Turn off MathJax
Article Contents
Chen Pengju, Zhou Zikai, Wang Sen, et al. Optimization of tetracycline degradation by nanosecond pulsed gas-liquid discharge with needle-water configuration[J]. High Power Laser and Particle Beams, 2024, 36: 035001. doi: 10.11884/HPLPB202436.230270
Citation: Chen Pengju, Zhou Zikai, Wang Sen, et al. Optimization of tetracycline degradation by nanosecond pulsed gas-liquid discharge with needle-water configuration[J]. High Power Laser and Particle Beams, 2024, 36: 035001. doi: 10.11884/HPLPB202436.230270

Optimization of tetracycline degradation by nanosecond pulsed gas-liquid discharge with needle-water configuration

doi: 10.11884/HPLPB202436.230270
  • Received Date: 2023-08-15
  • Accepted Date: 2024-01-22
  • Rev Recd Date: 2024-01-24
  • Available Online: 2024-01-31
  • Publish Date: 2024-03-15
  • Water pollution caused by the overuse of antibiotics poses a major threat to the natural environment and human health. As a green and environmentally friendly advanced oxidation technology, low-temperature plasma is considered to be one of the most promising antibiotic degradation methods, but it needs to be further improved in terms of degradation efficiency and energy efficiency. In this study, transient spark discharge was obtained by using nanosecond pulse power supply with a needle-water electrode configuration, and applied to tetracycline degradation in water. The effect of pulse voltage, frequency, initial concentration, initial pH value on tetracycline degradation was studied, and the results show that the degradation rate of tetracycline was the highest under the condition that the initial concentration was 50 mg/L, the pulse voltage was 9 kV, the frequency was 2 kHz, the initial pH is neutral, and the degradation rate reached 91.6% when the processing time was 10 min. The energy efficiency and electrical energy per order are 0.165 g·kW−1·h−1 and 0.78 kW·h·m−3, respectively. Free radical quenching experiments showed that hydroxyl radicals (·OH) played a major role in the degradation of tetracycline, while H2O2 and O3 played a slightly weaker role. Cytotoxicity experiments also showed that the toxicity of the solution decreased significantly after 10 min of gas-liquid discharge treatment.
  • loading
  • [1]
    Dai Yingjie, Liu Mei, Li Jingjing, et al. A review on pollution situation and treatment methods of tetracycline in groundwater[J]. Separation Science and Technology, 2020, 55(5): 1005-1021. doi: 10.1080/01496395.2019.1577445
    [2]
    梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4):1339-1358

    Mei Danhua, Fang Zhi, Shao Tao. Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358
    [3]
    戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20):1-9

    Dai Dong, Ning Wenjun, Shao Tao. A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9
    [4]
    孔刚玉, 刘定新. 气体等离子体与水溶液的相互作用研究——意义、挑战与新进展[J]. 高电压技术, 2014, 40(10):2956-2965

    Kong Gangyu, Liu Dingxin. Researches on the interaction between gas plasmas and aqueous solutions: significance, challenges and new progresses[J]. High Voltage Engineering, 2014, 40(10): 2956-2965
    [5]
    Miruka A C, Zhang Ai, Wang Qiancheng, et al. Degradation of glucocorticoids in water by a synergistic system of peroxymonosulfate, microbubble and dielectric barrier discharges[J]. Journal of Water Process Engineering, 2021, 42: 102175. doi: 10.1016/j.jwpe.2021.102175
    [6]
    武海霞, 陈卫刚, 方志, 等. 介质阻挡放电优化激活过硫酸盐处理四环素废水[J]. 高电压技术, 2019, 45(5):1387-1395

    Wu Haixia, Chen Weigang, Fang Zhi, et al. Optimized activation of persulfate by dielectric barrier discharge for the treatment of tetracycline wastewater[J]. High Voltage Engineering, 2019, 45(5): 1387-1395
    [7]
    Li Wenshao, Zhou Renwu, Zhou Rusen, et al. Insights into amoxicillin degradation in water by non-thermal plasmas[J]. Chemosphere, 2022, 291: 132757. doi: 10.1016/j.chemosphere.2021.132757
    [8]
    Wei Ying, Lu Guanglu, Xie Dongrun, et al. Degradation of enrofloxacin in aqueous by DBD plasma and UV: degradation performance, mechanism and toxicity assessment[J]. Chemical Engineering Journal, 2022, 431: 133360. doi: 10.1016/j.cej.2021.133360
    [9]
    Sar A B, Shabani E G, Haghighi M, et al. Synergistic catalytic degradation of ciprofloxacin using magnetic carbon nanomaterial/NiFe2O4 promoted cold atmospheric pressure plasma jet: Influence of charcoal, multi walled carbon nanotubes and walnut shell[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132: 104131. doi: 10.1016/j.jtice.2021.10.031
    [10]
    谢瑞, 陈超, 李武华, 等. 气液相等离子体放电水处理反应器及苯酚降解分析[J]. 高电压技术, 2010, 36(11):2791-2796

    Xie Rui, Chen Chao, Li Wuhuan, et al. Analysis on gas-liquid hybrid plasma discharge reactor for wastewater treatment and phenol degradation[J]. High Voltage Engineering, 2010, 36(11): 2791-2796
    [11]
    Liu Xinghao, Cheng Cheng, Xu Zimu, et al. Degradation of tetracycline in water by gas–liquid plasma in conjunction with rGO-TiO2 nanocomposite[J]. Plasma Science and Technology, 2021, 23: 115503. doi: 10.1088/2058-6272/ac1323
    [12]
    Chandana L, Ray D, Subrahmanyam C, et al. Physicochemical process of non-thermal plasma at gas-liquid interface and synergistic effect of plasma with catalyst[J]. Current Applied Physics, 2022, 36: 16-26. doi: 10.1016/j.cap.2022.01.006
    [13]
    Zhou Xiongfeng, Xiang Hongfu, Yang Minghao, et al. Temporal evolution characteristics of the excited species in a pulsed needle-water discharge: effect of voltage and frequency[J]. Journal of Physics D:Applied Physics, 2023, 56(45): 455202. doi: 10.1088/1361-6463/acec81
    [14]
    张波, 周若瑜, 汪立峰, 等. 脉冲参数对大气压He中一维射流阵列放电特性的影响[J]. 电工技术学报, 2018, 33(21):5109-5118

    Zhang Bo, Zhou Ruoyu, Wang Lifeng, et al. Influence of pulse parameters discharge characteristics of one-dimensional plasma jet array in heat atmospheric pressure[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 5109-5118
    [15]
    满晨曦, 黄邦斗, 章程, 等. 不同脉冲参数下等离子体活化水活性氮特性[J]. 高电压技术, 2022, 48(6):2326-2335

    Man Chenxi, Huang Bangdou, Zhang Cheng, et al. Reactive nitrogen species characteristic of plasma-activated water under different pulsed parameters[J]. High Voltage Engineering, 2022, 48(6): 2326-2335
    [16]
    Xiang Liangrui, Xie Zhehao, Guo He, et al. Efficient removal of emerging contaminant sulfamethoxazole in water by ozone coupled with calcium peroxide: Mechanism and toxicity assessment[J]. Chemosphere, 2021, 283: 131156. doi: 10.1016/j.chemosphere.2021.131156
    [17]
    Man Chenxi, Zhang Cheng, Fang Haiqin, et al. Nanosecond-pulsed microbubble plasma reactor for plasma-activated water generation and bacterial inactivation[J]. Plasma Processes and Polymers, 2022, 19: 2200004. doi: 10.1002/ppap.202200004
    [18]
    Zhang Tianqi, Zhou Renwu, Wang Peiyu, et al. Degradation of cefixime antibiotic in water by atmospheric plasma bubbles: performance, degradation pathways and toxicity evaluation[J]. Chemical Engineering Journal, 2021, 421: 127730. doi: 10.1016/j.cej.2020.127730
    [19]
    孙明, 郝夏桐, 鲁晓辉, 等. 气液两相脉冲放电反应器的设计及其对酸性橙Ⅱ的降解效果[J]. 高电压技术, 2015, 41(2):498-503

    Sun Ming, Hao Xiatong, Lu Xiaohui, et al. A reactor design of gas-liquid two-phase pulse discharge and its performance in degrading acid orange Ⅱ[J]. High Voltage Engineering, 2015, 41(2): 498-503
    [20]
    Wang Chao, Qu Guangzhou, Wang Tiecheng, et al. Removal of tetracycline antibiotics from wastewater by pulsed corona discharge plasma coupled with natural soil particles[J]. Chemical Engineering Journal, 2018, 346: 159-170. doi: 10.1016/j.cej.2018.03.149
    [21]
    Mouele E S M, Myo T Z M, Kyaw H H, et al. Degradation of sulfamethoxazole by double cylindrical dielectric barrier discharge system combined with Ti/C-N-TiO2 supported nanocatalyst[J]. Journal of Hazardous Materials Advances, 2022, 5: 100051. doi: 10.1016/j.hazadv.2022.100051
    [22]
    孙明, 金宏力, 杨颜颜, 等. 脉冲放电等离子体协同二氧化钛降解偶氮类染料废水[J]. 高电压技术, 2015, 41(9):2862-2867

    Sun Ming, Jin Hongli, Yang Yanyan, et al. Degradation of azo dye wastewater using pulsed discharge plasma with TiO2[J]. High Voltage Engineering, 2015, 41(9): 2862-2867
    [23]
    Wu Haixia, Fan Jiawei, Liu Feng, et al. Degradation of tetracycline in aqueous solution by persulphate assisted gas–liquid dielectric barrier discharge[J]. Water and Environment Journal, 2021, 35(3): 902-912. doi: 10.1111/wej.12678
    [24]
    Li Zhen, Wang Yawen, Guo He, et al. Insights into water film DBD plasma driven by pulse power for ibuprofen elimination in water: performance, mechanism and degradation route[J]. Separation and Purification Technology, 2021, 277: 119415. doi: 10.1016/j.seppur.2021.119415
    [25]
    Li Hu, Li Tengfei, He Sitong, et al. Efficient degradation of antibiotics by non-thermal discharge plasma: highlight the impacts of molecular structures and degradation pathways[J]. Chemical Engineering Journal, 2020, 395: 125091. doi: 10.1016/j.cej.2020.125091
    [26]
    王芝, 韩若愚, 李显东, 等. 水中针-板结构小能量脉冲火花放电特性[J]. 强激光与粒子束, 2022, 34:095006 doi: 10.11884/HPLPB202234.220022

    Wang Zhi, Han Ruoyu, Li Xiandong, et al. Low-energy pulsed spark discharge characteristics of pin-plate structure in water[J]. High Power Laser and Particle Beams, 2022, 34: 095006 doi: 10.11884/HPLPB202234.220022
    [27]
    Gong Shi, Sun Yabing, Zheng Ke, et al. Degradation of levofloxacin in aqueous solution by non-thermal plasma combined with Ag3PO4/activated carbon fibers: Mechanism and degradation pathways[J]. Separation and Purification Technology, 2020, 250: 117264. doi: 10.1016/j.seppur.2020.117264
    [28]
    刘亚韪, 周子凯, 王森, 等. 大气压空气针-水结构脉冲气-液放电特性研究[J]. 强激光与粒子束, 2021, 33:065008 doi: 10.11884/HPLPB202133.210020

    Liu Yawei, Zhou Zikai, Wang Sen, et al. Research on the characteristics of atmospheric pressure air pulse gas-liquid discharge using a needle-water electrode[J]. High Power Laser and Particle Beams, 2021, 33: 065008 doi: 10.11884/HPLPB202133.210020
    [29]
    Zheng Ke, Sun Yabing, Gong Shi, et al. Degradation of sulfamethoxazole in aqueous solution by dielectric barrier discharge plasma combined with Bi2WO6–rMoS2 nanocomposite: mechanism and degradation pathway[J]. Chemosphere, 2019, 222: 872-883. doi: 10.1016/j.chemosphere.2019.02.004
    [30]
    Zhou Renwu, Zhou Rusen, Alam D, et al. Plasmacatalytic bubbles using CeO2 for organic pollutant degradation[J]. Chemical Engineering Journal, 2021, 403: 126413. doi: 10.1016/j.cej.2020.126413
    [31]
    Hao Chunjing, Yan Zeyao, Liu Kefu, et al. Degradation of pharmaceutical contaminant tetracycline in aqueous solution by coaxial-type DBD plasma reactor[J]. IEEE Transactions on Plasma Science, 2020, 48(2): 471-481. doi: 10.1109/TPS.2020.2964612
    [32]
    Brisset J L, Hnatiuc E. Peroxynitrite: a re-examination of the chemical properties of non-thermal discharges burning in air over aqueous solutions[J]. Plasma Chemistry and Plasma Processing, 2012, 32(4): 655-674. doi: 10.1007/s11090-012-9384-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (99) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return