Volume 36 Issue 9
Aug.  2024
Turn off MathJax
Article Contents
Ye Longjian, Dong Pan, Li Jie, et al. Diagnosis and simulation of Penning source in associated neutron tube[J]. High Power Laser and Particle Beams, 2024, 36: 094002. doi: 10.11884/HPLPB202436.230283
Citation: Ye Longjian, Dong Pan, Li Jie, et al. Diagnosis and simulation of Penning source in associated neutron tube[J]. High Power Laser and Particle Beams, 2024, 36: 094002. doi: 10.11884/HPLPB202436.230283

Diagnosis and simulation of Penning source in associated neutron tube

doi: 10.11884/HPLPB202436.230283
  • Received Date: 2024-02-25
  • Accepted Date: 2024-06-03
  • Rev Recd Date: 2024-06-03
  • Available Online: 2024-06-12
  • Publish Date: 2024-08-16
  • Penning ion source has been widely used in associated neutron tube due to its simple structure, small size and low power consumption. Based on the Penning ion source used in the laboratory, the volt-ampere characteristics in the ionization process are analyzed. The distribution of plasma is observed by a CCD camera inside the ion source. The density and temperature of electrons are analyzed by spectroscopy of the hydrogen plasma. Based on the Penning ion source structure used in the laboratory, this paper establishes a global model of collision ionization of H2 molecules and analyzes the influence of working parameters of ion source to the electron temperature and electron density in the plasma. The electron density increases gradually with the increase of discharge power, and it increases first and then decreases when the magnetic field and pressure increase. It is necessary to control the magnetic field within 0.03−0.05 T, and the pressure within (0.2−2)×10−2 Pa. The electron temperature increases with the power and decreases with pressure. The model shows that the electron temperature is less than 10 eV, and the electron density is 1010 cm−3 in the operating range of Penning ion source.
  • loading
  • [1]
    Perot B, Perret G, Mariani A, et al. The EURITRACK project: development of a tagged neutron inspection system for cargo containers[C]//Proceedings of the SPIE 6213, Non-Intrusive Inspection Technologies. 2006: 621305.
    [2]
    Ruskov I N, Kopatch Y N, Bystritsky V M, et al. TANGRA-setup for the investigation of nuclear fission induced by 14.1 MeV neutrons[J]. Physics Procedia, 2015, 64: 163-170. doi: 10.1016/j.phpro.2015.04.022
    [3]
    Koltick D S, Kane S Z, Lvovsky M, et al. Characterization of an associated particle neutron generator with ZnO: Ga alpha-detector and active focusing[J]. IEEE Transactions on Nuclear Science, 2009, 56(3): 1301-1305. doi: 10.1109/TNS.2008.2009536
    [4]
    Chichester D L, Lemchak M, Simpson J D. The API 120: A portable neutron generator for the associated particle technique[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, 241(1/4): 753-758.
    [5]
    Li Cong, Jing Shiwei, Xue Hui. Dose evaluation in a portable D–T neutron generator facility by Monte Carlo method[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324(2): 533-539. doi: 10.1007/s10967-020-07090-z
    [6]
    肖坤祥, 周明贵, 谈效华. 潘宁离子源中电磁场和气压对氢气电离的影响[J]. 真空电子技术, 2003(6):26-28,38 doi: 10.3969/j.issn.1002-8935.2003.06.007

    Xiao Kunxiang, Zhou Minggui, Tan Xiaohua. The influences of electromagnetic field and pressure on hydrogen ionization in Penning ion source[J]. Vacuum Electronics, 2003(6): 26-28,38 doi: 10.3969/j.issn.1002-8935.2003.06.007
    [7]
    石磊, 肖坤祥, 钱沐杨. 带电粒子在微型潘宁离子源中的动力学仿真[C]//中国核科学技术进展报告(第三卷)——中国核学会2013年学术年会论文集第6册(核物理分卷、计算物理分卷、粒子加速器分卷). 2013

    Shi Lei, Xiao Kunxiang, Qian Muyang. Dynamic simulation of the charged particles in miniature Penning ion source[C]//Progress Report on China Nuclear Science and Technology. 2023
    [8]
    Noori H, Khodabakhshi E, Jõgi I. The effects of uniform versus non-uniform magnetic field on characteristics of a Penning ion source[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 962: 163667. doi: 10.1016/j.nima.2020.163667
    [9]
    Yang Zhen, Dong Pan, Wang Tao, et al. Studies on hydrogen plasma in a Penning ion source by optical emission spectroscopy[J]. IEEE Transactions on Plasma Science, 2013, 41(10): 2941-2945. doi: 10.1109/TPS.2013.2281055
    [10]
    李卓希, 杨洪广. 中子管用潘宁离子源电离特性研究[J]. 电子世界, 2019(11):31-32

    Li Zhuoxi, Yang Hongguang. Study on the ionization characteristics of Penning ion source in neutron tubes[J]. Electronics World, 2019(11): 31-32
    [11]
    武文斌, 彭士香, 张艾霖, 等. 微型电子回旋共振离子源的全局模型[J]. 物理学报, 2022, 71:145204 doi: 10.7498/aps.71.20212250

    Wu Wenbin, Peng Shixiang, Zhang Ailin, et al. Global model of miniature electron cyclotron resonance ion source[J]. Acta Physica Sinica, 2022, 71: 145204 doi: 10.7498/aps.71.20212250
    [12]
    李杰, 董攀, 王韬, 等. 磁场调控型离子源的设计与实验[J]. 强激光与粒子束, 2022, 34:074001 doi: 10.11884/HPLPB202234.210515

    Li Jie, Dong Pan, Wang Tao, et al. Design and experimental study of magnetic field regulating ion source[J]. High Power Laser and Particle Beams, 2022, 34: 074001 doi: 10.11884/HPLPB202234.210515
    [13]
    董攀, 龙继东, 陈德彪, 等. 强流激光离子源中的等离子体参数诊断[J]. 强激光与粒子束, 2016, 28:055103 doi: 10.11884/HPLPB201628.055103

    Dong Pan, Long Jidong, Chen Debiao, et al. Diagnosis of plasma in high current laser ion source[J]. High Power Laser and Particle Beams, 2016, 28: 055103 doi: 10.11884/HPLPB201628.055103
    [14]
    董攀, 龙继东, 杨振, 等. Penning型负氢离子源诊断[J]. 强激光与粒子束, 2011, 23(9):2503-2506 doi: 10.3788/HPLPB20112309.2503

    Dong Pan, Long Jidong, Yang Zheng, et al. Diagnosis of Penning-type negative hydrogen ion source[J]. High Power Laser and Particle Beams, 2011, 23(9): 2503-2506 doi: 10.3788/HPLPB20112309.2503
    [15]
    Chan C F, Burrell C F, Cooper W S. Model of positive ion sources for neutral beam injection[J]. Journal of Applied Physics, 1983, 54(11): 6119-6137. doi: 10.1063/1.331948
    [16]
    Tawara H, Itikawa Y, Nishimura H, et al. Cross sections and related data for electron collisions with hydrogen molecules and molecular ions[J]. Journal of Physical and Chemical Reference Data, 1990, 19(3): 617-636. doi: 10.1063/1.555856
    [17]
    Schmidt M. Elementary processes in hydrogen-helium plasmas cross sections and reaction rate coefficients. by R. K. Janev, W. D. Langer, K. Evans, Jr. , D. E. Post, Jr. Springer-Verlag Heidelberg, New York, London, Paris, Tokyo (Springer Series on Atoms and Plasmas Vol. 4) p.326 Fig.107[J]. Contributions to Plasma Physics, 1989, 29: 10.
    [18]
    Huh S Y, Kim N K, Jung B K, et al. Global model analysis of negative ion generation in low-pressure inductively coupled hydrogen plasmas with bi-Maxwellian electron energy distributions[J]. Physics of Plasmas, 2015, 22: 033506. doi: 10.1063/1.4914088
    [19]
    Mamedov N V, Kolodko D V, Sorokin I A, et al. Energy & mass-charge distribution peculiarities of ion emitted from Penning source[J]. Journal of Physics: Conference Series, 2017, 830: 012063. doi: 10.1088/1742-6596/830/1/012063
    [20]
    陈宇航, 龙继东, 刘尔祥, 等. 磁场引起的潘宁离子源阻抗变化研究[J]. 强激光与粒子束, 2016, 28:045107 doi: 10.11884/HPLPB201628.125107

    Chen Yuhang, Long Jidong, Liu Erxiang, et al. Impact of magnetic field on Penning discharge[J]. High Power Laser and Particle Beams, 2016, 28: 045107 doi: 10.11884/HPLPB201628.125107
    [21]
    Jin Dazhi, Yang Zhonghai, Xiao Kunxiang, et al. Diagnosis of hydrogen plasma in a miniature Penning ion source by double probes[J]. Plasma Science and Technology, 2009, 11(1): 48-51. doi: 10.1088/1009-0630/11/1/10
    [22]
    Yan Fei, Jin Dazhi, Chen Lei, et al. Deuterium plasma diagnosis in a miniature penning ion source by a single probe[J]. IEEE Transactions on Plasma Science, 2018, 46(7): 2546-2549. doi: 10.1109/TPS.2018.2797362
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (652) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return