Volume 36 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Shi Yongxing, Zhang Baoling, Yan Penghui. Molecular dynamics study of the effect of helium on the heat transfer performance of tungsten[J]. High Power Laser and Particle Beams, 2024, 36: 016003. doi: 10.11884/HPLPB202436.230291
Citation: Shi Yongxing, Zhang Baoling, Yan Penghui. Molecular dynamics study of the effect of helium on the heat transfer performance of tungsten[J]. High Power Laser and Particle Beams, 2024, 36: 016003. doi: 10.11884/HPLPB202436.230291

Molecular dynamics study of the effect of helium on the heat transfer performance of tungsten

doi: 10.11884/HPLPB202436.230291
  • Received Date: 2023-09-01
  • Accepted Date: 2023-12-19
  • Rev Recd Date: 2023-12-12
  • Available Online: 2024-01-15
  • Publish Date: 2024-01-15
  • The effect of helium radiation on the heat transfer performance of tungsten was studied using molecular dynamics method. The changes of thermal conductivity of single crystal tungsten and polycrystalline tungsten with helium content as well as the microscopic mechanism were analyzed at the atomic scale. The results show that, as the number of helium atom increases from 0 to 500, the number of defect pairs in tungsten increases first and then decreases. When the number of helium atom in single crystal tungsten is 230, the defect pair reaches a peak of 123. In polycrystalline tungsten, the number of defect pairs reaches a peak of 124 at 480 helium atoms. The lattice structure of tungsten changes from bcc to coexistence of bcc, fcc and hcp. The thermal conductivity of tungsten fluctuates significantly with the increasing helium content, which shows a trend of nonlinear decrease in general. When the helium content is 0.75%, the thermal conductivities of single crystal tungsten and polycrystalline tungsten decrease by 1.44% and 1.3%, respectively. The creation and aggregation of point defects as well as the change of crystal structure induced by helium radiation are responsible for the decrease of thermal conductivity of tungsten.
  • loading
  • [1]
    桑超峰, 周庆瑞, 王真厚, 等. 托卡马克钨偏滤器基本物理问题[J]. 南昌大学学报(理科版), 2022, 46(3):277-294

    Sang Chaofeng, Zhou Qingrui, Wang Zhenhou, et al. The main physical issues of the tungsten divertor in Tokamak[J]. Journal of Nanchang University (Natural Science), 2022, 46(3): 277-294
    [2]
    张一鸣, 曾丽萍, 沈欣媛, 等. ITER计划与聚变能发展战略[J]. 核聚变与等离子体物理, 2013, 33(4):359-365

    Zhang Yiming, Zeng Liping, Shen Xinyuan, et al. ITER project and fusion energy development strategy[J]. Nuclear Fusion and Plasma Physics, 2013, 33(4): 359-365
    [3]
    Neu R, Riesch J, Coenen J W, et al. Advanced tungsten materials for plasma-facing components of DEMO and fusion power plants[J]. Fusion Engineering and Design, 2016, 109/111: 1046-1052. doi: 10.1016/j.fusengdes.2016.01.027
    [4]
    吴玉程, 姚刚, 罗来马, 等. 核聚变堆用钨及钨基材料热负荷损伤行为的研究进展[J]. 中国有色金属学报, 2018, 28(4):719-731

    Wu Yucheng, Yao Gang, Luo Laima, et al. Research progress in heat load damage behavior of tungsten and tungsten base materials for nuclear fusion reactor[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(4): 719-731
    [5]
    Thompson M, Kluth P, Doerner R P, et al. Probing helium nano-bubble formation in tungsten with grazing incidence small angle x-ray scattering[J]. Nuclear Fusion, 2015, 55(4): 042001. doi: 10.1088/0029-5515/55/4/042001
    [6]
    Ueda Y, Peng H Y, Lee H T, et al. Helium effects on tungsten surface morphology and deuterium retention[J]. Journal of Nuclear Materials, 2013, 442(1/3 Suppl 1): S267-S272.
    [7]
    汪俊, 张宝玲, 周宇璐, 等. 金属钨中氦行为的分子动力学模拟[J]. 物理学报, 2011, 60:106601 doi: 10.7498/aps.60.106601

    Wang Jun, Zhang Baoling, Zhou Yulu, et al. Molecular dynamics simulation of helium behavior in tungsten matrix[J]. Acta Physica Sinica, 2011, 60: 106601 doi: 10.7498/aps.60.106601
    [8]
    Allen F I, Hosemann P, Balooch M. Key mechanistic features of swelling and blistering of helium-ion-irradiated tungsten[J]. Scripta Materialia, 2020, 178: 256-260. doi: 10.1016/j.scriptamat.2019.11.039
    [9]
    Kajita S, Yagi T, Kobayashi K, et al. Measurement of thermophysical property of plasma forming tungsten nanofiber layer[J]. Japanese Journal of Applied Physics, 2016, 55: 056203. doi: 10.7567/JJAP.55.056203
    [10]
    Hu Lin, Wirth B D, Maroudas D. Thermal conductivity of tungsten: Effects of plasma-related structural defects from molecular-dynamics simulations[J]. Applied Physics Letters, 2017, 111: 081902. doi: 10.1063/1.4986956
    [11]
    Wu Xuebang, Kong Xiangshan, You Yuwei, et al. Effects of alloying and transmutation impurities on stability and mobility of helium in tungsten under a fusion environment[J]. Nuclear Fusion, 2013, 53: 073049. doi: 10.1088/0029-5515/53/7/073049
    [12]
    Zhou Zhangjian, Pintsuk G, Linke J, et al. Transient high heat load tests on pure ultra-fine grained tungsten fabricated by resistance sintering under ultra-high pressure[J]. Fusion Engineering and Design, 2010, 85(1): 115-121. doi: 10.1016/j.fusengdes.2009.08.003
    [13]
    刘凤, 李强, 王万景, 等. 超细晶/纳米晶钨—未来聚变堆面向等离子体材料[J]. 材料导报, 2011, 25(19):43-48,71

    Liu Feng, Li Qiang, Wang Wanjing, et al. Ultra-fine grained/nano-crystalline tungsten—Plasma facing material for future fusion reactors[J]. Materials Reports, 2011, 25(19): 43-48,71
    [14]
    Plimpton S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. doi: 10.1006/jcph.1995.1039
    [15]
    Thompson A P, Aktulga H M, Berger R, et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales[J]. Computer Physics Communications, 2022, 271: 108171. doi: 10.1016/j.cpc.2021.108171
    [16]
    Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool[J]. Modelling and Simulation in Materials science and Engineering, 2010, 18: 015012. doi: 10.1088/0965-0393/18/1/015012
    [17]
    Daw M S, Baskes M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals[J]. Physical Review B, 1984, 29(12): 6443-6453. doi: 10.1103/PhysRevB.29.6443
    [18]
    Bonny G, Grigorev P, Terentyev D. On the binding of nanometric hydrogen–helium clusters in tungsten[J]. Journal of Physics:Condensed Matter, 2014, 26: 485001. doi: 10.1088/0953-8984/26/48/485001
    [19]
    周良付, 张婧, 何文豪, 等. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟[J]. 物理学报, 2020, 69:046103 doi: 10.7498/aps.69.20191069

    Zhou Liangfu, Zhang Jing, He Wenhao, et al. The nucleation and growth of Helium hubbles at grain boundaries of bcc tungsten: a molecular dynamics simulation[J]. Acta Physica Sinica, 2020, 69: 046103 doi: 10.7498/aps.69.20191069
    [20]
    Zhang B L, Fang S Y, Wang J, et al. Study on helium bubble coalescence in the slip plane of titanium[J]. Fusion Science and Technology, 2021, 77(6): 437-445. doi: 10.1080/15361055.2021.1927583
    [21]
    张宝玲. 钛金属氦损伤的分子动力学研究[M]. 北京: 中国水利水电出版社, 2016: 3-10

    Zhang Baoling. Molecular dynamics study of helium damage in titanium metal[M]. Beijing: China Water Power Press, 2016: 3-10
    [22]
    Fu Baqin, Lai Wensheng, Yuan Yue, et al. Calculation and analysis of lattice thermal conductivity in tungsten by molecular dynamics[J]. Journal of Nuclear Materials, 2012, 427(1/3): 268-273.
    [23]
    Qu Shilian, Sun Hao, Kreter A, et al. Degradation of thermal conductivity of the damaged layer of tungsten irradiated by helium-plasma[J]. Fusion Engineering and Design, 2018, 137: 97-103. doi: 10.1016/j.fusengdes.2018.08.014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (172) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return