Volume 36 Issue 3
Feb.  2024
Turn off MathJax
Article Contents
Shang Tianbo, Yang Wei¹, Song Mengmeng, et al. A hierarchical method for verification of particle-in-cell/ Monte Carlo collision modelling on plasma discharges[J]. High Power Laser and Particle Beams, 2024, 36: 033002. doi: 10.11884/HPLPB202436.230335
Citation: Shang Tianbo, Yang Wei¹, Song Mengmeng, et al. A hierarchical method for verification of particle-in-cell/ Monte Carlo collision modelling on plasma discharges[J]. High Power Laser and Particle Beams, 2024, 36: 033002. doi: 10.11884/HPLPB202436.230335

A hierarchical method for verification of particle-in-cell/ Monte Carlo collision modelling on plasma discharges

doi: 10.11884/HPLPB202436.230335
  • Received Date: 2023-09-28
  • Accepted Date: 2023-12-29
  • Rev Recd Date: 2023-12-29
  • Available Online: 2024-01-11
  • Publish Date: 2024-02-29
  • The verification of scientific computing currently places a strong emphasis on grid discretization methods for systems of deterministic partial differential equations. However, verifying particle-in-cell (PIC) simulations, which employ a particle-mesh method to model discharging plasmas, presents distinctive challenges. Firstly, PIC simulations require discretization not only in time and space but also in macro-particle weights. Secondly, challenges arise regarding the utilization of the discretized particle phase space distribution function for verification purposes. Thirdly, the interpolation of electric fields and charge distribution can significantly impact the overall accuracy of PIC convergence.When PIC methods are integrated with Monte Carlo (MC) methods, discretization and stochastic errors often combine, necessitating Richardson extrapolation in conjunction with ensemble averaging.To tackle these challenges, this paper introduces a hierarchical verification approach. It commences with order-of-accuracy tests for individual particle trajectories, electromagnetic field solvers, and binary-particle collisions. Discretization errors for integrated PIC and MC modules are then evaluated using classical physical models that possess exact solutions, such as space-charge-limited current and Fourier flow in gases. Finally, a code-to-code comparison is performed with benchmark examples of simplified discharge simulations.
  • loading
  • [1]
    Mehta U B. Credible computational fluid dynamics simulations[J]. AIAA Journal, 1998, 36(5): 665-667. doi: 10.2514/2.431
    [2]
    Oberkampf W L, Trucano T G. Verification and validation benchmarks[J]. Nuclear Engineering and Design, 2008, 238(3): 716-743. doi: 10.1016/j.nucengdes.2007.02.032
    [3]
    Turner M M. Verification of particle-in-cell simulations with Monte Carlo collisions[J]. Plasma Sources Science and Technology, 2016, 25: 054007. doi: 10.1088/0963-0252/25/5/054007
    [4]
    Riva F, Beadle C F, Ricci P. A methodology for the rigorous verification of Particle-in-Cell simulations[J]. Physics of Plasmas, 2017, 24: 055703. doi: 10.1063/1.4977917
    [5]
    Fierro A, Barnat E, Hopkins M, et al. Challenges and opportunities in verification and validation of low temperature plasma simulations and experiments[J]. The European Physical Journal D, 2021, 75: 151. doi: 10.1140/epjd/s10053-021-00088-6
    [6]
    Tranquilli P, Ricketson L, Chacón L. A deterministic verification strategy for electrostatic particle-in-cell algorithms in arbitrary spatial dimensions using the method of manufactured solutions[J]. Journal of Computational Physics, 2022, 448: 110751. doi: 10.1016/j.jcp.2021.110751
    [7]
    DeChant C, Icenhour C, Keniley S, et al. Verification methods for drift-diffusion reaction models for plasma simulations[J]. Plasma Sources Science and Technology, 2023, 32: 044006. doi: 10.1088/1361-6595/acce65
    [8]
    O’Connor S, Crawford Z D, Verboncoeur J P, et al. A set of benchmark tests for validation of 3-D particle in cell methods[J]. IEEE Transactions on Plasma Science, 2021, 49(5): 1724-1731. doi: 10.1109/TPS.2021.3072353
    [9]
    Xiao Jianyuan, Qin Hong, Liu Jian, et al. Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems[J]. Physics of Plasmas, 2015, 22: 112504. doi: 10.1063/1.4935904
    [10]
    Smith J R, Orban C, Rahman N, et al. A particle-in-cell code comparison for ion acceleration: EPOCH, LSP, and WarpX[J]. Physics of Plasmas, 2021, 28: 074505. doi: 10.1063/5.0053109
    [11]
    Bagheri B, Teunissen J, Ebert U, et al. Comparison of six simulation codes for positive streamers in air[J]. Plasma Sources Science and Technology, 2018, 27: 095002. doi: 10.1088/1361-6595/aad768
    [12]
    Bravenec R V, Chen Y, Candy J, et al. A verification of the gyrokinetic microstability codes GEM, GYRO, and GS2[J]. Physics of Plasmas, 2013, 20: 104506. doi: 10.1063/1.4826511
    [13]
    Turner M M, Derzsi A, Donkó Z, et al. Simulation benchmarks for low-pressure plasmas: Capacitive discharges[J]. Physics of Plasmas, 2013, 20: 013507. doi: 10.1063/1.4775084
    [14]
    Charoy T, Boeuf J P, Bourdon A, et al. 2D axial-azimuthal particle-in-cell benchmark for low-temperature partially magnetized plasmas[J]. Plasma Sources Science and Technology, 2019, 28: 105010. doi: 10.1088/1361-6595/ab46c5
    [15]
    Radtke G A, Martin N, Moore C H, et al. Robust verification of stochastic simulation codes[J]. Journal of Computational Physics, 2022, 451: 110855. doi: 10.1016/j.jcp.2021.110855
    [16]
    Taccogna F. Monte Carlo collision method for low temperature plasma simulation[J]. Journal of Plasma Physics, 2014, 81: 305810102.
    [17]
    Timko H, Crozier P S, Hopkins M M, et al. Why perform code-to-code comparisons: A vacuum arc discharge simulation case study[J]. Contributions to Plasma Physics, 2012, 52(4): 295-308. doi: 10.1002/ctpp.201100051
    [18]
    Carlsson J, Khrabrov A, Kaganovich I, et al. Validation and benchmarking of two particle-in-cell codes for a glow discharge[J]. Plasma Sources Science and Technology, 2016, 26: 014003. doi: 10.1088/0963-0252/26/1/014003
    [19]
    Gonzalez-Herrero D, Micera A, Boella E, et al. ECsim-CYL: Energy Conserving Semi-Implicit particle in cell simulation in axially symmetric cylindrical coordinates[J]. Computer Physics Communications, 2019, 236: 153-163. doi: 10.1016/j.cpc.2018.10.026
    [20]
    Krook M, Wu T T. Formation of Maxwellian tails[J]. Physical Review Letters, 1976, 36(19): 1107-1109. doi: 10.1103/PhysRevLett.36.1107
    [21]
    Bobylev A V. Proceedings of the USSR Academy of Sciences, 1975, 225: 1041.
    [22]
    Krook M, Wu T T. Exact solution of Boltzmann equations for multicomponent systems[J]. Physical Review Letters, 1977, 38(18): 991-993. doi: 10.1103/PhysRevLett.38.991
    [23]
    Myong R S, Karchani A, Ejtehadi O. A review and perspective on a convergence analysis of the direct simulation Monte Carlo and solution verification[J]. Physics of Fluids, 2019, 31: 066101. doi: 10.1063/1.5093746
    [24]
    Rader D J, Gallis M A, Torczynski J R, et al. Direct simulation Monte Carlo convergence behavior of the hard-sphere-gas thermal conductivity for Fourier heat flow[J]. Physics of Fluids, 2006, 18: 077102. doi: 10.1063/1.2213640
    [25]
    Chapman S, Cowling T G. The mathematical theory of non-uniform gases[M]. Cambridge: Cambridge University Press, 1935.
    [26]
    Reid I D. An investigation of the accuracy of numerical solutions of Boltzmann’s equation for electron swarms in gases with large inelastic cross sections[J]. Australian Journal of Physics, 1979, 32(3): 231-254. doi: 10.1071/PH790231
    [27]
    Lucas J, Saelee H T. A comparison of a Monte Carlo simulation and the Boltzmann solution for electron swarm motion in gases[J]. Journal of Physics D:Applied Physics, 1975, 8(6): 640-650. doi: 10.1088/0022-3727/8/6/007
    [28]
    Ness K F, Robson R E. Velocity distribution function and transport coefficients of electron swarms in gases. II. Moment equations and applications[J]. Physical Review A, 1986, 34(3): 2185-2209. doi: 10.1103/PhysRevA.34.2185
    [29]
    Kumar K. Swarms in periodically time dependent electric fields[J]. Australian Journal of Physics, 1995, 48(3): 365-376. doi: 10.1071/PH950365
    [30]
    Spitzer L Jr, Härm R. Transport phenomena in a completely ionized gas[J]. Physical Review, 1953, 89(5): 977-981. doi: 10.1103/PhysRev.89.977
    [31]
    Kovalev V F, Bychenkov V Y. Analytic solutions to the vlasov equations for expanding plasmas[J]. Physical Review Letters, 2003, 90: 185004. doi: 10.1103/PhysRevLett.90.185004
    [32]
    Kilian P, Muñoz P A, Cedric Schreiner, et al. Plasma waves as a benchmark problem[J]. Journal of Plasma Physics, 2017, 83: 707830101. doi: 10.1017/S0022377817000149
    [33]
    Lau Y Y. Simple theory for the two-dimensional Child-Langmuir law[J]. Physical Review Letters, 2001, 87: 278301. doi: 10.1103/PhysRevLett.87.278301
    [34]
    Zhu Y S, Zhang P, Valfells A, et al. Novel scaling laws for the Langmuir-Blodgett solutions in cylindrical and spherical diodes[J]. Physical Review Letters, 2013, 110: 265007. doi: 10.1103/PhysRevLett.110.265007
    [35]
    Caflisch R E, Rosin M S. Beyond the Child-Langmuir limit[J]. Physical Review E, 2012, 85: 056408. doi: 10.1103/PhysRevE.85.056408
    [36]
    Rokhlenko A. Child-Langmuir flow with periodically varying anode voltage[J]. Physics of Plasmas, 2015, 22: 022126. doi: 10.1063/1.4913351
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views (188) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return