Volume 36 Issue 3
Feb.  2024
Turn off MathJax
Article Contents
Liu Ying, Xiong Yisong, Li Yue, et al. Design of X-band low phase noise sapphire oscillator[J]. High Power Laser and Particle Beams, 2024, 36: 033004. doi: 10.11884/HPLPB202436.230343
Citation: Liu Ying, Xiong Yisong, Li Yue, et al. Design of X-band low phase noise sapphire oscillator[J]. High Power Laser and Particle Beams, 2024, 36: 033004. doi: 10.11884/HPLPB202436.230343

Design of X-band low phase noise sapphire oscillator

doi: 10.11884/HPLPB202436.230343
  • Received Date: 2023-10-08
  • Accepted Date: 2023-12-29
  • Rev Recd Date: 2023-12-28
  • Available Online: 2024-02-04
  • Publish Date: 2024-02-29
  • The paper presents the design and temperature control of a low phase noise sapphire oscillator. Utilizing the theory of sapphire resonator, finite element simulation software is employed to accomplish the design process. The measured center frequency of the sapphire resonator is 9.84 GHz with a loaded Q value of 113000. By utilizing the sapphire resonator as a frequency selection network along with components such as amplifier, filter, phase shifter and coupler, a low-noise sapphire oscillator is constructed. The output frequency of this oscillator is 9.84 GHz with an output power of 9 dBm. It exhibits excellent performance in terms of phase noise: −117 dBc/Hz at 1 kHz deviation from the carrier, −144 dBc/Hz at 10 kHz deviation from the carrier, and −161 dBc/Hz at 100 kHz deviation from the carrier. This oscillator significantly enhances radar capabilities for the detection of low-speed and small targets.
  • loading
  • [1]
    李赟玺. 面向“低慢小”目标探测与识别的激光雷达关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020

    Li Yunxi. Research on key technologies of Lidar oriented to the detection and recognition of the “low, slow and small” targets[D]. Harbin: Harbin Institute of Technology, 2020
    [2]
    向志强, 刘波, 江少锋. “低慢小”目标的雷达与光电复合探测跟踪方法[J]. 计算机测量与控制, 2023, 31(5):34-40,47

    Xiang Zhiqiang, Liu Bo, Jiang Shaofeng. Radar and opto-electrical composite detection and tracking method for LSS-target[J]. Computer Measurement & Control, 2023, 31(5): 34-40,47
    [3]
    陈小龙, 陈唯实, 饶云华, 等. 飞鸟与无人机目标雷达探测与识别技术进展与展望[J]. 雷达学报, 2020, 9(5):803-827

    Chen Xiaolong, Chen Weishi, Rao Yunhua, et al. Progress and prospects of radar target detection and recognition technology for flying birds and unmanned aerial vehicles[J]. Journal of Radars, 2020, 9(5): 803-827
    [4]
    李沅鹏. X波段低相噪低杂散频率源研究与设计[D]. 南京: 南京信息工程大学, 2019

    Li Yuanpeng. Research and design of X band low phase noise and low spurious frequency source[D]. Nanjing: Nanjing University of Information Science & Technology, 2019
    [5]
    董洪新, 邰战雄, 李强, 等. 基于晶振倍频鉴相的C波段低相噪频率源设计[J]. 太赫兹科学与电子信息学报, 2016, 14(4): 606-609

    Dong Hongxin, Tai Zhanxiong, Li Qiang, et al. Design of a C - band low phase noise frequency synthesizer based on phase detecting with crystal oscillator multiplication[J]. Journal of Terahertz Science and Electronic Information Technology, 2016, 14(4): 606-609
    [6]
    Kaesbach R, Van Delden M, Musch T. A fixed-frequency, tunable dielectric resonator oscillator with phase-locked loop stabilization[C]//2022 Asia-Pacific Microwave Conference (APMC). 2022: 728-730.
    [7]
    朱英超. 基于微波介电陶瓷的X波段取样锁相介质振荡器[D]. 成都: 电子科技大学, 2016

    Zhu Yingchao. The X band sampling phase locked dielectric oscillator based on microwave dielectric ceramics[D]. Chengdu: University of Electronic Science and Technology of China, 2016
    [8]
    杜倚诚. K波段介质振荡锁相源[D]. 成都: 电子科技大学, 2013

    Du Yicheng. K-band dielectric resonator oscillator phase-locked frequency source[D]. Chengdu: University of Electronic Science and Technology of China, 2013
    [9]
    秦自恺. 压电石英晶体[M]. 北京: 国防工业出版社, 1980

    Qin Zikai. Piezoelectric quartz crystal[M]. Beijing: National Defense Industry Press, 1980
    [10]
    Braginsky V B, Mitrofanov V P, Panov V I, et al. Systems with small dissipation[J]. American Journal of Physics, 1987, 55(12): 1153-1154. doi: 10.1119/1.15272
    [11]
    Galani Z, Bianchini M J, Waterman R C, et al. Analysis and design of a single-resonator GaAs FET oscillator with noise degeneration[J]. IEEE Transactions on Microwave Theory and Techniques, 1984, 32(12): 1556-1565. doi: 10.1109/TMTT.1984.1132894
    [12]
    Ivanov E N, Tobar M E, Woode R A. Advanced phase noise suppression technique for next generation of ultra low-noise microwave oscillators[C]//Proceedings of the 1995 IEEE International Frequency Control Symposium. 1995: 314-320.
    [13]
    Ivanov E N, Tobar M E. Low phase-noise microwave oscillators with interferometric signal processing[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(8): 3284-3294. doi: 10.1109/TMTT.2006.879172
    [14]
    彭成文. 锁相介质振荡器[J]. 电子对抗技术, 2001, 16(4):43-47

    Peng Chengwen. Phase locked medium oscillator[J]. Electronic Warfare Technology, 2001, 16(4): 43-47
    [15]
    杨非. 低相位噪声蓝宝石振荡器研究[D]. 南京: 东南大学, 2007

    Yang Fei. Research of low phase noise sapphire oscillator[D]. Nanjing: Southeast University, 2007
    [16]
    严羽. X波段低相噪取样锁相介质振荡器[D]. 成都: 电子科技大学, 2009

    Yan Yu. X-band phase-locked dielectric resonator oscillator with low phase noise sampling[D]. Chengdu: University of Electronic Science and Technology of China, 2009
    [17]
    冯琛皓. 超稳和超低相位噪声低温蓝宝石振荡器的研究[D]. 武汉: 华中科技大学, 2017

    Feng Chenhao. Research on ultra-stable and ultra-low phase noise cryogenic sapphire oscillator[D]. Wuhan: Huazhong University of Science and Technology, 2017
    [18]
    张珂. 超低相噪振荡器设计及放大器相位噪声测量研究[D]. 南京: 东南大学, 2017

    Zhang Ke. A design of a ultra-low-phase-noise oscillator and a study on measurement of the phase noise of amplifier[D]. Nanjing: Southeast University, 2017
    [19]
    Hartnett J G, Tobar M E, Ivanov E N, et al. Optimum design of a high- Q room-temperature whispering-gallery-mode X-band sapphire resonator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60(6): 1041-1047. doi: 10.1109/TUFFC.2013.2668
    [20]
    Creedon D L, Benmessai K, Tobar M E. Frequency conversion in a high Q-factor sapphire whispering gallery mode resonator due to paramagnetic nonlinearity[J]. Physical Review Letters, 2012, 109: 143902. doi: 10.1103/PhysRevLett.109.143902
    [21]
    范思晨, 杨帆, 阮军. 蓝宝石谐振体内的回音壁模电磁场分布[J]. 物理学报, 2022, 71:234101 doi: 10.7498/aps.71.20221156

    Fan Sichen, Yang Fan, Ruan Jun. Electromagnetic field distribution of whispering gallery mode in a sapphire resonator[J]. Acta Physica Sinica, 2022, 71: 234101 doi: 10.7498/aps.71.20221156
    [22]
    何逸箫, 李闯, 李宏宇. 基于HFSS的蓝宝石谐振器仿真设计[J]. 宇航计测技术, 2021, 41(3):49-56

    He Yixiao, Li Chuang, Li Hongyu. Simulation design of sapphire resonator based on HFSS[J]. Journal of Astronautic Metrology and Measurement, 2021, 41(3): 49-56
    [23]
    Tobar M E, Ivanov E N, Locke C R, et al. Difference frequency technique to achieve frequency-temperature compensation in whispering-gallery sapphire resonator-oscillator[J]. Electronics Letters, 2002, 38(17): 948-950. doi: 10.1049/el:20020670
    [24]
    Tsarapkin D P, Shtin N A. Whispering gallery resonators with programmed temperature coefficient of frequency[C]//Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition. 2002: 565-571.
    [25]
    邵慧敏. 超高Q值低温蓝宝石振荡器的初步搭建与评估[D]. 武汉: 华中科技大学, 2022

    Shao Huimin. Preliminary building and evaluation of cryogenic sapphire oscillator with ultrahigh Q-factor[D]. Wuhan: Huazhong University of Science and Technology, 2022
    [26]
    朱鹏飞. Ku波段超低相噪振荡器研制[D]. 成都: 电子科技大学, 2019

    Zhu Pengfei. The development of Ku-band ultralow phase noise oscillator[D]. Chengdu: University of Electronic Science and Technology of China, 2019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (115) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return