Volume 36 Issue 3
Feb.  2024
Turn off MathJax
Article Contents
Yang Wenyu, Chai Xiang, Zhu Enping, et al. Development of mechanical property analysis program for space thermionic fuel element[J]. High Power Laser and Particle Beams, 2024, 36: 036001. doi: 10.11884/HPLPB202436.230388
Citation: Yang Wenyu, Chai Xiang, Zhu Enping, et al. Development of mechanical property analysis program for space thermionic fuel element[J]. High Power Laser and Particle Beams, 2024, 36: 036001. doi: 10.11884/HPLPB202436.230388

Development of mechanical property analysis program for space thermionic fuel element

doi: 10.11884/HPLPB202436.230388
  • Received Date: 2023-11-01
  • Accepted Date: 2024-01-23
  • Rev Recd Date: 2024-01-23
  • Available Online: 2024-01-29
  • Publish Date: 2024-03-15
  • To predict the safety performance of fuel elements during operation of a space thermionic reactor, this study developed a mechanical performance analysis program for fuel elements, and conducted high-precision simulation of stress, strain, and geometric deformation for the multi-layer cylindrical TOPAZ-II thermionic fuel element. The program takes into account the irradiation swelling of nuclear fuel under high-temperature radiation environment, and analyzes the mechanical response of the fuel pellet-emitter after contact, thereby quickly and accurately solving the mechanical state of the fuel pellet and emitter, to provide accurate prediction of the performance during operation of the space thermionic reactor. The results indicate that in normal operating conditions, the fuel of a space thermionic reactor undergoes significant swelling effects, which causes deformation that can lead to potential safety hazards such as reduced thermal-electric conversion efficiency and component failure.
  • loading
  • [1]
    Cameron G, Reynolds E. Integration of the Topaz 2 space nuclear reactor with the NEPSTP spacecraft[C]//Proceedings of the Intersociety Energy Conversion Engineering Conference. 1994: 3817.
    [2]
    Thurman J L. Optimization of steady-state thermal design of space radiators[J]. Journal of Spacecraft and Rockets, 1969, 6(10): 1114-1119. doi: 10.2514/3.29773
    [3]
    Bellucci A, Girolami M, Trucchi D M. Thermionic and thermoelectric energy conversion[M]//Datas A. Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion. Duxford: Woodhead Publishing, 2021: 253-284.
    [4]
    Pastore G, Pizzocri D, Rabiti C, et al. An effective numerical algorithm for intra-granular fission gas release during non-equilibrium trapping and resolution[J]. Journal of Nuclear Materials, 2018, 509: 687-699. doi: 10.1016/j.jnucmat.2018.07.030
    [5]
    Olander D R, Wongsawaeng D. Re-solution of fission gas–A review: Part I. Intragranular bubbles[J]. Journal of Nuclear Materials, 2006, 354(1/3): 94-109.
    [6]
    Pastore G, Luzzi L, Di Marcello V, et al. Physics-based modelling of fission gas swelling and release in UO2 applied to integral fuel rod analysis[J]. Nuclear Engineering and Design, 2013, 256: 75-86. doi: 10.1016/j.nucengdes.2012.12.002
    [7]
    Hagrman D L, Reymann G A. MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior[R]. Idaho Falls: Idaho National Lab. , 1979: 37-44.
    [8]
    Luscher W G, Geelhood K J. Material property correlations: comparisons between FRAPCON-3.4, FRAPTRAN 1.4, and MATPRO[R]. Richland: Pacific Northwest National Lab. , 2010: 42-53.
    [9]
    薛守义. 弹塑性力学[M]. 北京: 中国建材工业出版社, 2005: 25-30

    Xue Shouyi. Theory of elasticity and plasticity[M]. Beijing: China Building Materials Press, 2005: 25-30
    [10]
    Karahan A. Modelling of thermo-mechanical and irradiation behavior of metallic and oxide fuels for sodium fast reactors[D]. Cambridge: Massachusetts Institute of Technology, 2009: 99-103.
    [11]
    Deng Yangbin, Wu Yingwei, Gong Cheng, et al. Upgrade of FROBA code and its application in thermal-mechanical analysis of space reactor fuel[J]. Nuclear Engineering and Design, 2018, 332: 297-306. doi: 10.1016/j.nucengdes.2018.03.041
    [12]
    Baker C. The fission gas bubble distribution in uranium dioxide from high temperature irradiated sghwr fuel pins[J]. Journal of Nuclear Materials, 1977, 66(3): 283-291. doi: 10.1016/0022-3115(77)90117-9
    [13]
    White R J. The development of grain-face porosity in irradiated oxide fuel[J]. Journal of Nuclear Materials, 2004, 325(1): 61-77. doi: 10.1016/j.jnucmat.2003.10.008
    [14]
    朱滨. 弹性力学[M]. 合肥: 中国科学技术大学出版社, 2008: 148-151

    Zhu Bin. Elasticity[M]. Hefei: University of Science and Technology of China Press, 2008: 148-151
    [15]
    张系斌. 圆柱筒的应力与变形分析[J]. 工程力学, 2000(s1):456-460

    Zhang Xibin. Stress and deformation analysis of cylindrical tubes[J]. Engineering Mechanics, 2000(s1): 456-460
    [16]
    Valentini B, Leuprecht C, Plankensteiner A, et al. Finite element analysis of the high-temperature creep deformation of a TZM heavy duty charge carrier[J]. International Journal of Refractory Metals and Hard Materials, 2015, 53: 104-110. doi: 10.1016/j.ijrmhm.2015.05.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article views (657) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return