| Citation: | Yang Wenyu, Chai Xiang, Zhu Enping, et al. Development of mechanical property analysis program for space thermionic fuel element[J]. High Power Laser and Particle Beams, 2024, 36: 036001. doi: 10.11884/HPLPB202436.230388 |
| [1] |
Cameron G, Reynolds E. Integration of the Topaz 2 space nuclear reactor with the NEPSTP spacecraft[C]//Proceedings of the Intersociety Energy Conversion Engineering Conference. 1994: 3817.
|
| [2] |
Thurman J L. Optimization of steady-state thermal design of space radiators[J]. Journal of Spacecraft and Rockets, 1969, 6(10): 1114-1119. doi: 10.2514/3.29773
|
| [3] |
Bellucci A, Girolami M, Trucchi D M. Thermionic and thermoelectric energy conversion[M]//Datas A. Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion. Duxford: Woodhead Publishing, 2021: 253-284.
|
| [4] |
Pastore G, Pizzocri D, Rabiti C, et al. An effective numerical algorithm for intra-granular fission gas release during non-equilibrium trapping and resolution[J]. Journal of Nuclear Materials, 2018, 509: 687-699. doi: 10.1016/j.jnucmat.2018.07.030
|
| [5] |
Olander D R, Wongsawaeng D. Re-solution of fission gas–A review: Part I. Intragranular bubbles[J]. Journal of Nuclear Materials, 2006, 354(1/3): 94-109.
|
| [6] |
Pastore G, Luzzi L, Di Marcello V, et al. Physics-based modelling of fission gas swelling and release in UO2 applied to integral fuel rod analysis[J]. Nuclear Engineering and Design, 2013, 256: 75-86. doi: 10.1016/j.nucengdes.2012.12.002
|
| [7] |
Hagrman D L, Reymann G A. MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior[R]. Idaho Falls: Idaho National Lab. , 1979: 37-44.
|
| [8] |
Luscher W G, Geelhood K J. Material property correlations: comparisons between FRAPCON-3.4, FRAPTRAN 1.4, and MATPRO[R]. Richland: Pacific Northwest National Lab. , 2010: 42-53.
|
| [9] |
薛守义. 弹塑性力学[M]. 北京: 中国建材工业出版社, 2005: 25-30
Xue Shouyi. Theory of elasticity and plasticity[M]. Beijing: China Building Materials Press, 2005: 25-30
|
| [10] |
Karahan A. Modelling of thermo-mechanical and irradiation behavior of metallic and oxide fuels for sodium fast reactors[D]. Cambridge: Massachusetts Institute of Technology, 2009: 99-103.
|
| [11] |
Deng Yangbin, Wu Yingwei, Gong Cheng, et al. Upgrade of FROBA code and its application in thermal-mechanical analysis of space reactor fuel[J]. Nuclear Engineering and Design, 2018, 332: 297-306. doi: 10.1016/j.nucengdes.2018.03.041
|
| [12] |
Baker C. The fission gas bubble distribution in uranium dioxide from high temperature irradiated sghwr fuel pins[J]. Journal of Nuclear Materials, 1977, 66(3): 283-291. doi: 10.1016/0022-3115(77)90117-9
|
| [13] |
White R J. The development of grain-face porosity in irradiated oxide fuel[J]. Journal of Nuclear Materials, 2004, 325(1): 61-77. doi: 10.1016/j.jnucmat.2003.10.008
|
| [14] |
朱滨. 弹性力学[M]. 合肥: 中国科学技术大学出版社, 2008: 148-151
Zhu Bin. Elasticity[M]. Hefei: University of Science and Technology of China Press, 2008: 148-151
|
| [15] |
张系斌. 圆柱筒的应力与变形分析[J]. 工程力学, 2000(s1):456-460
Zhang Xibin. Stress and deformation analysis of cylindrical tubes[J]. Engineering Mechanics, 2000(s1): 456-460
|
| [16] |
Valentini B, Leuprecht C, Plankensteiner A, et al. Finite element analysis of the high-temperature creep deformation of a TZM heavy duty charge carrier[J]. International Journal of Refractory Metals and Hard Materials, 2015, 53: 104-110. doi: 10.1016/j.ijrmhm.2015.05.015
|