| Citation: | Chen Chao, Du Shuangsong, Hu Rui, et al. Development of a superconducting longitudinal gradient bend prototype for Hefei Advanced Light Facility storage ring[J]. High Power Laser and Particle Beams, 2024, 36: 084002. doi: 10.11884/HPLPB202436.230407 |
| [1] |
焦毅, 白正贺. 第四代同步辐射光源物理设计与优化[J]. 强激光与粒子束, 2022, 34:104004 doi: 10.11884/HPLPB202234.220136
Jiao Yi, Bai Zhenghe. Physics design and optimization of the fourth-generation synchrotron light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104004 doi: 10.11884/HPLPB202234.220136
|
| [2] |
焦毅, 徐刚, 陈森玉, 等. 衍射极限储存环物理设计研究进展[J]. 强激光与粒子束, 2015, 27:045108 doi: 10.11884/HPLPB201527.045108
Jiao Yi, Xu Gang, Chen Senyu, et al. Advances in physical design of diffraction-limited storage ring[J]. High Power Laser and Particle Beams, 2015, 27: 045108 doi: 10.11884/HPLPB201527.045108
|
| [3] |
Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 2014, 21(5): 843-855. doi: 10.1107/S1600577514011515
|
| [4] |
Riemann B, Streun A. Low emittance lattice design from first principles: reverse bending and longitudinal gradient bends[J]. Physical Review Accelerators and Beams, 2019, 22: 021601. doi: 10.1103/PhysRevAccelBeams.22.021601
|
| [5] |
Kashikhin V S, Borland M, Chlachidze G, et al. Longitudinal gradient dipole magnet prototype for APS at ANL[J]. IEEE Transactions on Applied Superconductivity, 2016, 26: 4002505.
|
| [6] |
Saeidi F, Pourimani R, Rahighi J, et al. Normal conducting superbend in an ultralow emittance storage ring[J]. Physical Review Special Topics - Accelerators and Beams, 2015, 18: 082401. doi: 10.1103/PhysRevSTAB.18.082401
|
| [7] |
Le Bec G, Chavanne J, Villar F, et al. Magnets for the ESRF diffraction-limited light source project[J]. IEEE Transactions on Applied Superconductivity, 2016, 26: 4000107.
|
| [8] |
Citadini J, Vilela L N P, Basilio R, et al. Sirius-details of the new 3.2 T permanent magnet superbend[J]. IEEE Transactions on Applied Superconductivity, 2018, 28: 4101104.
|
| [9] |
Calzolaio C, Sanfilippo S, Sidorov S, et al. Design of a superconducting longitudinal gradient bend magnet for the SLS upgrade[J]. IEEE Transactions on Applied Superconductivity, 2017, 27: 4000305.
|
| [10] |
Streun A, Wrulich A. Compact low emittance light sources based on longitudinal gradient bending magnets[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 770: 98-112.
|
| [11] |
Juchno M, Venturini M, Virostek S, et al. Conceptual design of superbend and hardbend magnets for Advance Light Source upgrade project[J]. IEEE Transactions on Applied Superconductivity, 2020, 30: 4100505.
|
| [12] |
Vianna A A, Seraphim R M, Pereira A G C, et al. Conceptual design of a C-shaped 6.4 T superconducting dipole magnet[J]. IEEE Transactions on Applied Superconductivity, 2022, 32: 4002005.
|
| [13] |
Calzolaio C, Gabard A, Lerch P, et al. Longitudinal gradient bend magnets for the upgrade of the Swiss Light Source storage ring[J]. IEEE Transactions on Applied Superconductivity, 2020, 30: 4100905.
|
| [14] |
Zbanik J, Wang S T, Chen J Y, et al. ALS superbend magnet system[J]. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 2531-2534. doi: 10.1109/77.920381
|
| [15] |
Chen C, Wang L, Feng G Y, et al. Electromagnetic design study of a superconducting longitudinal gradient bend magnet based on the HALF storage ring[J]. Journal of Instrumentation, 2023, 18: P06003. doi: 10.1088/1748-0221/18/06/P06003
|
| [16] |
白正贺, 刘刚文, 何天龙, 等. 合肥先进光源储存环初步物理设计[J]. 强激光与粒子束, 2022, 34:104003 doi: 10.11884/HPLPB202234.220137
Bai Zhenghe, Liu Gangwen, He Tianlong, et al. Preliminary physics design of the Hefei Advanced Light Facility storage ring[J]. High Power Laser and Particle Beams, 2022, 34: 104003 doi: 10.11884/HPLPB202234.220137
|
| [17] |
张骁龙, 申飞, 任亭亭, 等. 基于LabVIEW的超导磁体数据监测与分析系统[J]. 仪表技术, 2021(2):38-42
Zhang Xiaolong, Shen Fei, Ren Tingting, et al. LabVIEW-based superconducting magnet data monitor and analysis system[J]. Instrumentation Technology, 2021(2): 38-42
|
| [18] |
周安若, 马毅龙, 陈登明, 等. 1J50软磁合金的温度稳定性研究[J]. 功能材料, 2014, 45(16):16030-16032 doi: 10.3969/j.issn.1001-9731.2014.16.007
Zhou Anruo, Ma Yilong, Chen Dengming, et al. Study on the temperature-magnetic stability of 1J50 alloy[J]. Journal of Functional Materials, 2014, 45(16): 16030-16032 doi: 10.3969/j.issn.1001-9731.2014.16.007
|
| [19] |
汪天龙, 邱清泉, 靖立伟, 等. 铁磁材料低温磁性能测量研究[J]. 稀有金属材料与工程, 2019, 48(3):898-904
Wang Tianlong, Qiu Qingquan, Jing Liwei, et al. Measurement of magnetic properties of ferromagnetic materials at low temperature[J]. Rare Metal Materials and Engineering, 2019, 48(3): 898-904
|
| [20] |
陈敏, 丘明, 肖立业, 等. 铁芯材料在低温下的磁性能的研究[J]. 电工电能新技术, 2003, 22(1):35-38 doi: 10.3969/j.issn.1003-3076.2003.01.009
Chen Min, Qiu Ming, Xiao Liye, et al. Study on magnetic characteristics of the ferromagnetic materials at 77K[J]. Advanced Technology of Electrical Engineering and Energy, 2003, 22(1): 35-38 doi: 10.3969/j.issn.1003-3076.2003.01.009
|