Volume 36 Issue 8
Jul.  2024
Turn off MathJax
Article Contents
Chen Chao, Du Shuangsong, Hu Rui, et al. Development of a superconducting longitudinal gradient bend prototype for Hefei Advanced Light Facility storage ring[J]. High Power Laser and Particle Beams, 2024, 36: 084002. doi: 10.11884/HPLPB202436.230407
Citation: Chen Chao, Du Shuangsong, Hu Rui, et al. Development of a superconducting longitudinal gradient bend prototype for Hefei Advanced Light Facility storage ring[J]. High Power Laser and Particle Beams, 2024, 36: 084002. doi: 10.11884/HPLPB202436.230407

Development of a superconducting longitudinal gradient bend prototype for Hefei Advanced Light Facility storage ring

doi: 10.11884/HPLPB202436.230407
  • Received Date: 2023-11-17
  • Accepted Date: 2024-03-09
  • Rev Recd Date: 2024-03-09
  • Available Online: 2024-05-25
  • Publish Date: 2024-07-04
  • This paper presents the development of superconducting longitudinal gradient bend prototype for Hefei Advanced Light Facility storage ring. The magnet structure parameters were optimized using a developed method that considered the requirements of spatial magnetic field distribution and magnet operating load. To verify the magnet design, a prototype magnet with a longitudinal length of 0.30 m and a pole gap of 46 mm was fabricated using a rectangular niobium-titanium wire and DT4C material. A simple low-temperature test device was built to measure the magnetizing characteristics of the magnet, and after more than 10 times of quench, the maximum operating current of the magnet was measured to be more than 275 A. The longitudinal magnetic field distribution of the magnet was measured, revealing an integral field of 0.4 T·m and a peak magnetic field of approximately 4.5 T at an operating current of about 196 A. The test results are basically consistent with the theoretical design, indicating that the design is reliable.
  • loading
  • [1]
    焦毅, 白正贺. 第四代同步辐射光源物理设计与优化[J]. 强激光与粒子束, 2022, 34:104004 doi: 10.11884/HPLPB202234.220136

    Jiao Yi, Bai Zhenghe. Physics design and optimization of the fourth-generation synchrotron light sources[J]. High Power Laser and Particle Beams, 2022, 34: 104004 doi: 10.11884/HPLPB202234.220136
    [2]
    焦毅, 徐刚, 陈森玉, 等. 衍射极限储存环物理设计研究进展[J]. 强激光与粒子束, 2015, 27:045108 doi: 10.11884/HPLPB201527.045108

    Jiao Yi, Xu Gang, Chen Senyu, et al. Advances in physical design of diffraction-limited storage ring[J]. High Power Laser and Particle Beams, 2015, 27: 045108 doi: 10.11884/HPLPB201527.045108
    [3]
    Hettel R. DLSR design and plans: an international overview[J]. Journal of Synchrotron Radiation, 2014, 21(5): 843-855. doi: 10.1107/S1600577514011515
    [4]
    Riemann B, Streun A. Low emittance lattice design from first principles: reverse bending and longitudinal gradient bends[J]. Physical Review Accelerators and Beams, 2019, 22: 021601. doi: 10.1103/PhysRevAccelBeams.22.021601
    [5]
    Kashikhin V S, Borland M, Chlachidze G, et al. Longitudinal gradient dipole magnet prototype for APS at ANL[J]. IEEE Transactions on Applied Superconductivity, 2016, 26: 4002505.
    [6]
    Saeidi F, Pourimani R, Rahighi J, et al. Normal conducting superbend in an ultralow emittance storage ring[J]. Physical Review Special Topics - Accelerators and Beams, 2015, 18: 082401. doi: 10.1103/PhysRevSTAB.18.082401
    [7]
    Le Bec G, Chavanne J, Villar F, et al. Magnets for the ESRF diffraction-limited light source project[J]. IEEE Transactions on Applied Superconductivity, 2016, 26: 4000107.
    [8]
    Citadini J, Vilela L N P, Basilio R, et al. Sirius-details of the new 3.2 T permanent magnet superbend[J]. IEEE Transactions on Applied Superconductivity, 2018, 28: 4101104.
    [9]
    Calzolaio C, Sanfilippo S, Sidorov S, et al. Design of a superconducting longitudinal gradient bend magnet for the SLS upgrade[J]. IEEE Transactions on Applied Superconductivity, 2017, 27: 4000305.
    [10]
    Streun A, Wrulich A. Compact low emittance light sources based on longitudinal gradient bending magnets[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 770: 98-112.
    [11]
    Juchno M, Venturini M, Virostek S, et al. Conceptual design of superbend and hardbend magnets for Advance Light Source upgrade project[J]. IEEE Transactions on Applied Superconductivity, 2020, 30: 4100505.
    [12]
    Vianna A A, Seraphim R M, Pereira A G C, et al. Conceptual design of a C-shaped 6.4 T superconducting dipole magnet[J]. IEEE Transactions on Applied Superconductivity, 2022, 32: 4002005.
    [13]
    Calzolaio C, Gabard A, Lerch P, et al. Longitudinal gradient bend magnets for the upgrade of the Swiss Light Source storage ring[J]. IEEE Transactions on Applied Superconductivity, 2020, 30: 4100905.
    [14]
    Zbanik J, Wang S T, Chen J Y, et al. ALS superbend magnet system[J]. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 2531-2534. doi: 10.1109/77.920381
    [15]
    Chen C, Wang L, Feng G Y, et al. Electromagnetic design study of a superconducting longitudinal gradient bend magnet based on the HALF storage ring[J]. Journal of Instrumentation, 2023, 18: P06003. doi: 10.1088/1748-0221/18/06/P06003
    [16]
    白正贺, 刘刚文, 何天龙, 等. 合肥先进光源储存环初步物理设计[J]. 强激光与粒子束, 2022, 34:104003 doi: 10.11884/HPLPB202234.220137

    Bai Zhenghe, Liu Gangwen, He Tianlong, et al. Preliminary physics design of the Hefei Advanced Light Facility storage ring[J]. High Power Laser and Particle Beams, 2022, 34: 104003 doi: 10.11884/HPLPB202234.220137
    [17]
    张骁龙, 申飞, 任亭亭, 等. 基于LabVIEW的超导磁体数据监测与分析系统[J]. 仪表技术, 2021(2):38-42

    Zhang Xiaolong, Shen Fei, Ren Tingting, et al. LabVIEW-based superconducting magnet data monitor and analysis system[J]. Instrumentation Technology, 2021(2): 38-42
    [18]
    周安若, 马毅龙, 陈登明, 等. 1J50软磁合金的温度稳定性研究[J]. 功能材料, 2014, 45(16):16030-16032 doi: 10.3969/j.issn.1001-9731.2014.16.007

    Zhou Anruo, Ma Yilong, Chen Dengming, et al. Study on the temperature-magnetic stability of 1J50 alloy[J]. Journal of Functional Materials, 2014, 45(16): 16030-16032 doi: 10.3969/j.issn.1001-9731.2014.16.007
    [19]
    汪天龙, 邱清泉, 靖立伟, 等. 铁磁材料低温磁性能测量研究[J]. 稀有金属材料与工程, 2019, 48(3):898-904

    Wang Tianlong, Qiu Qingquan, Jing Liwei, et al. Measurement of magnetic properties of ferromagnetic materials at low temperature[J]. Rare Metal Materials and Engineering, 2019, 48(3): 898-904
    [20]
    陈敏, 丘明, 肖立业, 等. 铁芯材料在低温下的磁性能的研究[J]. 电工电能新技术, 2003, 22(1):35-38 doi: 10.3969/j.issn.1003-3076.2003.01.009

    Chen Min, Qiu Ming, Xiao Liye, et al. Study on magnetic characteristics of the ferromagnetic materials at 77K[J]. Advanced Technology of Electrical Engineering and Energy, 2003, 22(1): 35-38 doi: 10.3969/j.issn.1003-3076.2003.01.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article views (485) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return