| Citation: | Hui Tianyu, Tong Lili, Cao Xuewu. Simulation of coolant boiling phenomenon in sodium cooled fast reactor based on porous medium approach[J]. High Power Laser and Particle Beams, 2024, 36: 076002. doi: 10.11884/HPLPB202436.230408 |
| [1] |
Tentner A M, Parma E, Wei T, et al. Severe accident approach-final report. Evaluation of design measures for severe accident prevention and consequence mitigation[R]. Argonne: Argonne National Laboratory, 2010.
|
| [2] |
Bachrata A, Bertrand F, Marie N, et al. A comparative study on severe accident phenomena related to melt progression in sodium fast reactors and pressurized water reactors[J]. Journal of Nuclear Engineering and Radiation Science, 2021, 7: 030801. doi: 10.1115/1.4047921
|
| [3] |
周科源, 喻宏, 胡赟, 等. CEFR钠空泡反应性效应试验测量与计算分析[J]. 原子能科学技术, 2013, 47(s1):70-74 doi: 10.7538/yzk.2013.47.zk.0070
Zhou Keyuan, Yu Hong, Hu Yun, et al. Measurement and analysis of CEFR sodium void reactivity effect[J]. Atomic Energy Science and Technology, 2013, 47(s1): 70-74 doi: 10.7538/yzk.2013.47.zk.0070
|
| [4] |
Waltar A E, Todd D R, Tsvetkov P V. Fast spectrum reactors[M]. New York: Springer, 2012.
|
| [5] |
Končar B, Matkovičc M, Prošek A. NEPTUNE_CFD analysis of flow field in rectangular boiling channel[J]. The Journal of Computational Multiphase Flows, 2012, 4(4): 399-409. doi: 10.1260/1757-482X.4.4.399
|
| [6] |
Mimouni S, Guingo M, Lavieville J. Assessment of RANS at low Prandtl number and simulation of sodium boiling flows with a CMFD code[J]. Nuclear Engineering and Design, 2017, 312: 294-302. doi: 10.1016/j.nucengdes.2016.07.006
|
| [7] |
Rose S D, Dearing J F. Post-test analysis of dryout test 7B' of the W-1 sodium loop safety facility experiment with the SABRE-2P code[R]. Milwaukee: Oak Ridge National Laboratory, 1981.
|
| [8] |
Ninokata H, Okano T A. Sabena: Subassembly boiling evolution numerical analysis[J]. Nuclear Engineering and Design, 1990, 120(2/3): 349-367.
|
| [9] |
No H C, Kazimi M S. An investigation of the physical foundations of two-fluid representation of sodium boiling in the liquid-metal fast breeder reactor[J]. Nuclear Science and Engineering, 1987, 97(4): 327-343. doi: 10.13182/NSE87-A23516
|
| [10] |
Kruessmann R, Ponomarev A, Pfrang W, et al. Assessment of SFR reactor safety issues: Part II: Analysis results of ULOF transients imposed on a variety of different innovative core designs with SAS-SFR[J]. Nuclear Engineering and Design, 2015, 285: 263-283. doi: 10.1016/j.nucengdes.2014.11.037
|
| [11] |
Perez-Martin S, Pfrang W, Haselbauer M. Analysis of the CABRI-1 single fuel pin LOF experiment BI1 with SAS-SFR code including two-phase sodium behavior[C]//Proceedings of the ICAPP 2014. 2014.
|
| [12] |
Chenu A, Mikityuk K, Chawla R. TRACE simulation of sodium boiling in pin bundle experiments under loss-of-flow conditions[J]. Nuclear Engineering and Design, 2009, 239(11): 2417-2429. doi: 10.1016/j.nucengdes.2009.07.015
|
| [13] |
吴宗芸, 刘天才, 吴明宇. 基于双区域模型的钠冷快堆组件子通道分析程序的开发与验证[J]. 原子能科学技术, 2022, 56(4):672-683 doi: 10.7538/yzk.2021.youxian.0297
Wu Zongyun, Liu Tiancai, Wu Mingyu. Development and validation of subchannel analysis program based on two-region model for sodium cooled fast reactor assembly[J]. Atomic Energy Science and Technology, 2022, 56(4): 672-683 doi: 10.7538/yzk.2021.youxian.0297
|
| [14] |
方闻韬, 佟立丽, 曹学武. 绕丝交混模型对钠冷快堆组件子通道分析的影响[J]. 强激光与粒子束, 2023, 35:096001 doi: 10.11884/HPLPB202335.230051
Fang Wentao, Tong Lili, Cao Xuewu. Influence of wire wrap mixing model on sub-channel analysis of sodium-cooled fast reactor assembly[J]. High Power Laser and Particle Beams, 2023, 35: 096001 doi: 10.11884/HPLPB202335.230051
|
| [15] |
Grand D, Basque G. Two-dimensional calculation of sodium boiling in sub-assemblies[C]//International Meeting on Fast Reactor Safety Technology. 1979.
|
| [16] |
Fukano Y. SAS4A analysis on hypothetical total instantaneous flow blockage in SFRs based on in-pile experiments[J]. Annals of Nuclear Energy, 2015, 77: 376-392. doi: 10.1016/j.anucene.2014.11.034
|
| [17] |
Domanus H M, Shah V L, Sha W T. Applications of the COMMIX code using the porous medium formulation[J]. Nuclear Engineering and Design, 1980, 62(1/3): 81-100.
|
| [18] |
Schor A L, Kazimi M S, Todreas N E. Advances in two-phase flow modeling for LMFBR applications[J]. Nuclear Engineering and Design, 1984, 82(2/3): 127-155.
|
| [19] |
徐迟, 李文龙, 谢淳, 等. 金属钠蒸发行为研究[J]. 原子能科学技术, 2022, 56(3):467-474 doi: 10.7538/yzk.2021.youxian.0792
Xu Chi, Li Wenlong, Xie Chun, et al. Evaporation behavior of metal sodium[J]. Atomic Energy Science and Technology, 2022, 56(3): 467-474 doi: 10.7538/yzk.2021.youxian.0792
|
| [20] |
Silver R S, Simpson H C. The condensation of superheated steam[C]//Proceeding of National England Laboratory Conference. 1961.
|
| [21] |
Schrage R W. A theoretical study of interphase mass transfer[M]. New York: Columbia University Press, 1953.
|
| [22] |
Sobolev V. Fuel rod and assembly proposal for XT-ADS pre-design[C]//Coordination meeting of WP1&WP2 of DM1 IP EUROTRANS. 2006: 8-9.
|
| [23] |
Chen J C. A correlation for boiling heat transfer in convection flow[R]. United States, 1962.
|
| [24] |
Borishanskii V M, Gotovskii M A, Firsova É V. Heat transfer to liquid metals in longitudinally wetted bundles of rods[J]. Soviet Atomic Energy, 1969, 27(6): 1347-1350. doi: 10.1007/BF01118660
|
| [25] |
Dittus F W, Boelter L M K. Heat transfer in automobile radiators of the tubular type[J]. International Communications in Heat and Mass Transfer, 1985, 12(1): 3-22. doi: 10.1016/0735-1933(85)90003-X
|
| [26] |
Bottoni M, Dorr B, Homann C, et al. Experimental and numerical investigations of sodium boiling experiments in pin bundle geometry[J]. Nuclear Technology, 1990, 89(1): 56-82. doi: 10.13182/NT90-A34359
|
| [27] |
Huber F, Kaiser A, Mattes K, et al. Steady state and transient sodium boiling experiments in a 37-pin bundle[J]. Nuclear Engineering and Design, 1987, 100(3): 377-386. doi: 10.1016/0029-5493(87)90087-2
|
| [28] |
Perez-Martin S, Anderhuber M, Laborde L, et al. Evaluation of sodium boiling models using KNS-37 loss of flow experiments[J]. Journal of Nuclear Engineering and Radiation Science, 2022, 8: 011310. doi: 10.1115/1.4050769
|