Volume 36 Issue 5
Apr.  2024
Turn off MathJax
Article Contents
Bao Hanchun, Guan Yinxia, Wang Shiqiang, et al. Spatial distribution of active particles in pulsed driven plasma jet[J]. High Power Laser and Particle Beams, 2024, 36: 055023. doi: 10.11884/HPLPB202436.230422
Citation: Bao Hanchun, Guan Yinxia, Wang Shiqiang, et al. Spatial distribution of active particles in pulsed driven plasma jet[J]. High Power Laser and Particle Beams, 2024, 36: 055023. doi: 10.11884/HPLPB202436.230422

Spatial distribution of active particles in pulsed driven plasma jet

doi: 10.11884/HPLPB202436.230422
  • Received Date: 2023-11-30
  • Accepted Date: 2024-04-01
  • Rev Recd Date: 2024-04-02
  • Available Online: 2024-04-09
  • Publish Date: 2024-04-28
  • To investigate the spatial distribution characteristics of active particles in atmospheric pressure pulse driven plasma jet, a coaxial double ring plasma jet reactor was used. Under external pulsed power excitation, the relative intensity changes of characteristic peaks of each active particle in different ionization regions along the axial space were studied. The results show that active particle characteristic peaks such as NO, OH, N2, N2+, He, can be detected at all measurement points of the pulse excited plasma jet, with the emission spectral bands and characteristic peaks corresponding to OH, N2, N2+ particles being more significant; In the upstream ionization section between the high-voltage electrode and the grounding electrode, the relative intensities of characteristic peaks of active particles NO, OH and N2 are higher near the high-voltage electrode and grounding electrode, while lower in the middle of the upstream ionization section. The relative intensities of characteristic peaks of different levels of He and N2+ gradually decrease along the airflow direction; In the midstream ionization section from the grounding electrode to the reactor nozzle, the axial distribution of relative intensities of active particles NO, OH and characteristic peaks of different energy levels N2, N2+ and He shows a gradually decreasing trend with the direction of the airflow; In the downstream ionization section from the reactor nozzle to the end of the plasma jet, the axial distribution of the relative intensity of the characteristic peaks of active particles OH and NO gradually weakens with the direction of gas flow. The relative intensity of the characteristic peaks of different energy levels N2, N2+ and He shows a pattern of first increasing and then decreasing, providing strong support for the in-depth study of the energy transfer process and reaction mechanism of pulse driven plasma jet.
  • loading
  • [1]
    金杞糠. 脉冲低温等离子体射流用于灭菌和凝血的实验研究[D]. 杭州: 浙江大学, 2019

    Jin Qikang. Experimental study on microorganism disinfection and blood coagulation using a pulsed cold plasma jet[D]. Hangzhou: Zhejiang University, 2019
    [2]
    Kuo C M, Wang Shumei, Huang C. Improved CoQ10 production of Rhodobacter sp. Treated by atmospheric pressure capacitive coupled radio frequency plasma jet[J]. High Energy Chemistry, 2022, 56(6): 461-467. doi: 10.1134/S0018143922060042
    [3]
    夏文杰, 刘定新. Ar等离子体射流处理乙醇水溶液的放电特性及灭菌效应[J]. 电工技术学报, 2021, 36(4):765-776

    Xia Wenjie, Liu Dingxin. Discharge characteristics and bactericidal effect of Ar plasma jet treating ethanol aqueous solution[J]. Transactions of China Electrotechnical Society, 2021, 36(4): 765-776
    [4]
    Khan T M, Alves G A S, Iqbal A. Processing laser ablated plasmonic nanoparticle aerosols with nonthermal dielectric barrier discharge jets of argon and helium and plasma induced effects[J]. Scientific Reports, 2023, 13: 77. doi: 10.1038/s41598-022-27294-5
    [5]
    邓成志, 韩若愚, 连秀云, 等. 大气压等离子体射流放电参数对沉积氧化钛薄膜特性的影响[J]. 石油学报(石油加工), 2023, 39(5):1070-1081

    Deng Chengzhi, Han Ruoyu, Lian Xiuyun, et al. Effect of atmospheric pressure plasma jet discharge parameters on the characteristics of deposited titanium oxide films[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(5): 1070-1081
    [6]
    于锦禄, 黄丹青, 王思博, 等. 等离子体点火与助燃技术在航空发动机上的应用[J]. 航空发动机, 2018, 44(3):12-20

    Yu Jinlu, Huang Danqing, Wang Sibo, et al. Application of plasma ignition and assisted combustion of aeroengine[J]. Aeroengine, 2018, 44(3): 12-20
    [7]
    唐诗雅, 刘全桢, 王世强, 等. 大气压脉冲介质阻挡放电等离子体研究进展[J]. 安全、健康和环境, 2019, 19(7):70-74

    Tang Shiya, Liu Quanzhen, Wang Shiqiang, et al. Research progress of atmospheric pressure pulsed dielectric barrier discharges[J]. Safety Health & Environment, 2019, 19(7): 70-74
    [8]
    刘伊静. 大气压等离子体射流及其降解染料废水应用[D]. 上海: 东华大学, 2023

    Liu Yijing. Atmospheric pressure plasma jet and its application in the degradation of dye wastewater[D]. Shanghai: Donghua University, 2023
    [9]
    张波, 汪立峰, 刘峰, 等. 交流和纳秒脉冲激励氦气中等离子体射流阵列放电特性比较[J]. 电工技术学报, 2019, 34(6):1319-1328

    Zhang Bo, Wang Lifeng, Liu Feng, et al. Comparison on discharge characteristics of the helium plasma jet array excited by alternating current and nanosecond pulse voltage[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1319-1328
    [10]
    张晋, 袁召, 陈立学, 等. 真空电弧等离子体发射光谱诊断[J]. 强激光与粒子束, 2021, 33:065014 doi: 10.11884/HPLPB202133.210116

    Zhang Jin, Yuan Zhao, Chen Lixue, et al. Vacuum arc plasma emission spectroscopy diagnosis[J]. High Power Laser and Particle Beams, 2021, 33: 065014 doi: 10.11884/HPLPB202133.210116
    [11]
    Shashurin A, Keidar M. Experimental approaches for studying non-equilibrium atmospheric plasma jets[J]. Physics of Plasmas, 2015, 22: 122002. doi: 10.1063/1.4933365
    [12]
    Lazarou C, Anastassiou C, Topala I, et al. The effect of Penning ionization reactions on the evolution of He with O2 admixtures plasma jets[J]. Journal of Physics D:Applied Physics, 2023, 56: 065203. doi: 10.1088/1361-6463/acb1c1
    [13]
    Zhang Bo, Zhu Ying, Liu Feng, et al. The influence of grounded electrode positions on the evolution and characteristics of an atmospheric pressure argon plasma jet[J]. Plasma Science and Technology, 2017, 19: 064001. doi: 10.1088/2058-6272/aa629f
    [14]
    Yonemori S, Nakagawa Y, Ono R, et al. Measurement of OH density and air-helium mixture ratio in an atmospheric-pressure helium plasma jet[J]. Journal of Physics D:Applied Physics, 2012, 45: 225202. doi: 10.1088/0022-3727/45/22/225202
    [15]
    吴淑群, 董熙, 裴学凯, 等. 基于激光诱导荧光法诊断大气压低温等离子体射流中OH自由基和O原子的时空分布[J]. 电工技术学报, 2017, 32(8):82-94

    Wu Shuqun, Dong Xi, Pei Xuekai, et al. Laser induced fluorescence diagnostics of the temporal and spatial distribution of OH radicals and O atom in a low temperature plasma jet at atmospheric pressure[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 82-94
    [16]
    宋鹏, 李政楷, 陈雷, 等. 大气压低温氦等离子体射流的诊断研究[J]. 光谱学与光谱分析, 2021, 41(6):1874-1879

    Song Peng, Li Zhengkai, Chen Lei, et al. Diagnosis of atmospheric pressure helium cryogenic plasma jet[J]. Spectroscopy and Spectral Analysis, 2021, 41(6): 1874-1879
    [17]
    赵娜, 吴凯玥, 陈俊宇, 等. 大直径射流的放电特性及其等离子体参数和活性粒子分布的光谱诊断[J]. 光谱学与光谱分析, 2021, 41(8):2644-2648

    Zhao Na, Wu Kaiyue, Chen Junyu, et al. Study on spectral characteristics of large diameter plasma jet[J]. Spectroscopy and Spectral Analysis, 2021, 41(8): 2644-2648
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (35) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return