Volume 36 Issue 5
Apr.  2024
Turn off MathJax
Article Contents
Huo Yankun, Liu Wenyuan, He Yajiao, et al. Two-stage microstructure on surface of vacuum polymer insulators[J]. High Power Laser and Particle Beams, 2024, 36: 055017. doi: 10.11884/HPLPB202436.230423
Citation: Huo Yankun, Liu Wenyuan, He Yajiao, et al. Two-stage microstructure on surface of vacuum polymer insulators[J]. High Power Laser and Particle Beams, 2024, 36: 055017. doi: 10.11884/HPLPB202436.230423

Two-stage microstructure on surface of vacuum polymer insulators

doi: 10.11884/HPLPB202436.230423
  • Received Date: 2023-11-03
  • Accepted Date: 2024-04-05
  • Rev Recd Date: 2024-04-05
  • Available Online: 2024-04-15
  • Publish Date: 2024-04-28
  • In a previous work, a two-stage microstructure was proposed and demonstrated to be able to sharply improve surface flashover voltage of polymer insulators in vacuum. In this paper, the two-stage microstructure was separated into two sub-structures, i.e., surface micro-groove structure and surface micro-hole structure, to study the voltage improvement mechanism in the two-stage microstructure. Through the synthesis of a composite material, laser treatment and acid corrosion, the two-stage microstructure was prepared as well as the two sub-structures. Flashover test of the insulators with the three kinds of surface structures showed that construction of micro grooves and micro holes on the surface of insulators could both enhance the surface flashover strength and their combination could further enhance the flashover strength. The results indicate that through proper combination of different kinds of surface structures multiple suppression of the flashover could be achieved and the surface flashover voltage could be further improved.
  • loading
  • [1]
    Zhang Guanjun, Su Guoqiang, Song Baipeng, et al. Pulsed flashover across a solid dielectric in vacuum[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(6): 2321-2339. doi: 10.1109/TDEI.2018.007133
    [2]
    Gleizer J Z, Krasik Y E, Leopold J. Time- and space-resolved light emission and spectroscopic research of the flashover plasma[J]. Journal of Applied Physics, 2015, 117: 073301. doi: 10.1063/1.4913213
    [3]
    Harris J R, Blackfield D, Caporaso G J, et al. Vacuum insulator development for the dielectric wall accelerator[J]. Journal of Applied Physics, 2008, 104: 023301. doi: 10.1063/1.2956702
    [4]
    Leopold J G, Leibovitz C, Navon I, et al. Different approach to pulsed high-voltage vacuum-insulation design[J]. Physical Review Accelerators and Beams, 2007, 10: 060401. doi: 10.1103/PhysRevSTAB.10.060401
    [5]
    Miller H C. Flashover of insulators in vacuum: the last twenty years[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(6): 3641-3657. doi: 10.1109/TDEI.2015.004702
    [6]
    Zhang Penghao, Zhang Shuai, Kong Fei, et al. Atmospheric-pressure plasma jet deposition of bumpy coating improves polypropylene surface flashover performance in vacuum[J]. Surface and Coatings Technology, 2020, 387: 125511. doi: 10.1016/j.surfcoat.2020.125511
    [7]
    Kong Fei, Zhang Penghao, Yu Weixin, et al. Enhanced surface insulating performance for polystyrene by atmospheric pressure plasma jet deposition[J]. Applied Surface Science, 2020, 527: 146826. doi: 10.1016/j.apsusc.2020.146826
    [8]
    Wang Chao, Li Wendong, Guo Jia, et al. Unraveling the role of surface molecular structure on vacuum flashover for fluorinated copolymers[J]. Applied Surface Science, 2020, 505: 144432. doi: 10.1016/j.apsusc.2019.144432
    [9]
    Zhou Rundong, Sun Guangyu, Song Baipeng, et al. Mechanism of F2/N2 fluorination mitigating vacuum flashover of polymers[J]. Journal of Physics D:Applied Physics, 2019, 52: 375304. doi: 10.1088/1361-6463/ab2583
    [10]
    Harris J R. A tutorial on vacuum surface flashover[J]. IEEE Transactions on Plasma Science, 2018, 46(6): 1872-1880. doi: 10.1109/TPS.2017.2759248
    [11]
    Sun Guangyu, Guo Baohong, Mu Haibao, et al. Flashover strength improvement and multipactor suppression in vacuum using surface charge pre-conditioning on insulator[J]. Journal of Applied Physics, 2018, 124: 134102. doi: 10.1063/1.5048063
    [12]
    Wang Ruixue, Lin Haofan, Gao Yuan, et al. Inorganic nanofilms for surface charge control on polymer surfaces by atmospheric-pressure plasma deposition[J]. Journal of Applied Physics, 2017, 122: 233302. doi: 10.1063/1.5008645
    [13]
    Kong Fei, Chang Chao, Ma Yiyang, et al. Surface modifications of polystyrene and their stability: a comparison of DBD plasma deposition and direct fluorination[J]. Applied Surface Science, 2018, 459: 300-308. doi: 10.1016/j.apsusc.2018.07.211
    [14]
    Li Shengtao, Huang Qifeng, Zhang Tuo, et al. New organic insulation system to improve the surface-flashover characteristics in vacuum[J]. IEEE Transactions on Plasma Science, 2010, 38(12): 3434-3441. doi: 10.1109/TPS.2010.2080288
    [15]
    Sun Guangyu, Guo Baohong, Song Baipeng, et al. Simulation on the dynamic charge behavior of vacuum flashover developing across insulator involving outgassing[J]. Physics of Plasmas, 2018, 25: 063502. doi: 10.1063/1.5025209
    [16]
    Cai Libing, Wang Jianguo, Zhu Xiangqin, et al. Two-dimensional simulation research of secondary electron emission avalanche discharge on vacuum insulator surface[J]. Physics of Plasmas, 2015, 22: 013502. doi: 10.1063/1.4905640
    [17]
    Miller H C, Ney R J. Gases released by surface flashover of insulators[J]. Journal of Applied Physics, 1988, 63(3): 668-673. doi: 10.1063/1.340055
    [18]
    Li Jian, Huang Rongjin, Wang Yongguang, et al. DC surface flashover characteristics of G-11CR in vacuum from room temperature to cryogenic temperatures[J]. Cryogenics, 2019, 101: 53-57. doi: 10.1016/j.cryogenics.2019.03.008
    [19]
    Gleizer J Z, Krasik Y E, Dai U, et al. Vacuum surface flashover: experiments and simulations[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(5): 2394-2404. doi: 10.1109/TDEI.2014.004628
    [20]
    Pillai A S, Hackam R. Surface flashover of solid insulators in atmospheric air and in vacuum[J]. Journal of Applied Physics, 1985, 58(1): 146-153. doi: 10.1063/1.335700
    [21]
    Cheng Guoxin, Cai Dan, Hong Zhiqiang, et al. Variation in time lags of vacuum surface flashover utilizing a periodically grooved dielectric[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(5): 1942-1950. doi: 10.1109/TDEI.2013.6633728
    [22]
    Chang C, Huang H J, Liu G Z, et al. The effect of grooved surface on dielectric multipactor[J]. Journal of Applied Physics, 2009, 105: 123305. doi: 10.1063/1.3153947
    [23]
    Naruse H, Saito H, Sakaki M, et al. Flashover mechanisms of bridged vacuum gaps based on cathode electric field measurement[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(1): 597-603. doi: 10.1109/TDEI.2014.004566
    [24]
    Yamamoto O, Markon S, Morii H. Depression of insulator charging in vacuum by partial mechanical processing[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(3): 606-612. doi: 10.1109/TDEI.2007.369520
    [25]
    Guo Baohong, Sun Guangyu, Zhang Shu, et al. Mechanism of vacuum flashover on surface roughness[J]. Journal of Physics D: Applied Physics, 2019, 52: 215301. doi: 10.1088/1361-6463/ab05a0
    [26]
    Huo Yankun, Liu Wenyuan, Ke Changfeng, et al. Sharp improvement of flashover strength from composite micro-textured surfaces[J]. Journal of Applied Physics, 2017, 122: 115105. doi: 10.1063/1.4991934
    [27]
    霍艳坤, 刘文元, 柯昌凤, 等. 聚合物绝缘子表面微结构构筑及闪络性能[J]. 强激光与粒子束, 2018, 30:035006 doi: 10.11884/HPLPB201830.170280

    Huo Yankun, Liu Wenyuan, Ke Changfeng, et al. Construction of micro-structure on polymer insulators and their surface flashover characteristics[J]. High Power Laser and Particle Beams, 2018, 30: 035006 doi: 10.11884/HPLPB201830.170280
    [28]
    Pivi M, King F K, Kirby R E, et al. Sharp reduction of the secondary electron emission yield from grooved surfaces[J]. Journal of Applied Physics, 2008, 104: 104904. doi: 10.1063/1.3021149
    [29]
    Cai Libing, Wang Jianguo, Cheng Guoxin, et al. Simulation of multipactor on the rectangular grooved dielectric surface[J]. Physics of Plasmas, 2015, 22: 113506. doi: 10.1063/1.4935385
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (34) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return