Turn off MathJax
Article Contents
Zhao Zifeng, Wang Guozheng, Hao Ziheng, et al. Simulation of the effect of hole shape on performance of CsI: Tl scintillation screens based on silicon microchannel arrays[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230424
Citation: Zhao Zifeng, Wang Guozheng, Hao Ziheng, et al. Simulation of the effect of hole shape on performance of CsI: Tl scintillation screens based on silicon microchannel arrays[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230424

Simulation of the effect of hole shape on performance of CsI: Tl scintillation screens based on silicon microchannel arrays

doi: 10.11884/HPLPB202436.230424
  • Received Date: 2023-12-01
  • Accepted Date: 2024-01-22
  • Rev Recd Date: 2024-01-24
  • Available Online: 2024-02-05
  • The Geant4 program was used to simulate the effect of micropore shape on the performance of CsI:Tl X-ray scintillation screen based on silicon microchannel array (SMA). The simulated scintillation screen performance parameters include: scintillation photons, bottom light output, transmission efficiency, percentage of n times total reflection, and modulation transfer function (MTF) versus spatial resolution. The shapes of the micropores were set to be square and circular during the simulation process, and the microchannel array period was the same for both hole shapes, which was 10 μm. The simulation results show that the number of scintillation photons in square micropores is better than that in circular micropores, and the number of fluorescent photons is directly proportional to the cross-sectional area of the micropores; while the thickness is less than 400 μm, the bottom light output of square micropores is better than that of circular micropores, when the thickness is greater than 400 μm, the situation is opposite; The transmission efficiency of circular micropores is better than that of square micropores; For the thickness of 40 and 200 μm, the spatial resolution of the square micropores scintillation screen is better than that of the circular micropores scintillation screen with the same thickness. A square microporous CsI: Tl scintillation screen sample was prepared, and the relationship between its MTF and spatial resolution was measured. When the MTF was 0.1, the spatial resolution was 22.6 lp/mm.
  • loading
  • [1]
    Nagarkar V V, Gupta T K, Miller S R, et al. Structured CsI(Tl) scintillators for X-ray imaging applications[J]. IEEE Transactions on Nuclear Science, 1998, 45(3): 492-496. doi: 10.1109/23.682433
    [2]
    王双双, 刘春阳, 王国政, 等. X射线能量对基于宏孔硅的X射线CsI(Tl)闪烁屏的影响[J]. 激光与光电子学进展, 2022, 59:1734001

    Wang Shuangshuang, Liu Chunyang, Wang Guozheng, et al. Effect of X-ray energy on X-ray CsI(Tl) scintillation screen based on macroporous silicon[J]. Laser & Optoelectronics Progress, 2022, 59: 1734001
    [3]
    Miller S R, Gaysinskiy V, Shestakova I, et al. Recent advances in columnar CsI(Tl) scintillator screens[C]//Proceedings of SPIE 5923, Penetrating Radiation Systems and Applications VII. 2005: 59230F.
    [4]
    顾牡, 张敏, 刘小林, 等. 微柱状CsI闪烁薄膜热蒸发生长工艺[J]. 强激光与粒子束, 2010, 22(2):374-378 doi: 10.3788/HPLPB20102202.0374

    Gu Mu, Zhang Min, Liu Xiaolin, et al. Growth process of CsI scintillating films with micro-columnar structure by thermal evaporation[J]. High Power Laser and Particle Beams, 2010, 22(2): 374-378 doi: 10.3788/HPLPB20102202.0374
    [5]
    郭金川, 牛憨笨, 周彬. 晶柱粘连对CsI: Na转换屏分辨特性的影响[J]. 光子学报, 2001, 30(10):1214-1217

    Guo Jinchuan, Niu Hanben, Zhou Bin. Influence of conglutination of CsI: Na columns on the resolution properties[J]. Acta Photonica Sinica, 2001, 30(10): 1214-1217
    [6]
    江孝国, 王伟, 王婉丽. X光作用下CsI: Tl晶体的转换效率研究[J]. 强激光与粒子束, 2005, 17(2):203-205

    Jiang Xiaoguo, Wang Wei, Wang Wanli. Conversion efficiency of the CsI: Tl crystal excited by X-ray[J]. High Power Laser and Particle Beams, 2005, 17(2): 203-205
    [7]
    袁云龙. 基于宏孔硅的X射线闪烁屏性能研究[D]. 长春: 长春理工大学, 2020: 41-47

    Yuan Yunlong. Research on X-ray scintillation screen based on macroporous silicon[D]. Changchun: Changchun University of Science and Technology, 2020: 41-47
    [8]
    Li ZhuXin, Michelet C, Incerti S, et al. Implementation of the EPICS2017 database for photons in Geant4[J]. Physica Medica, 2022, 95: 94-115. doi: 10.1016/j.ejmp.2022.01.008
    [9]
    Allison J, Amako K, Apostolakis J, et al. Geant4 developments and applications[J]. IEEE Transactions on Nuclear Science, 2006, 53(1): 270-278. doi: 10.1109/TNS.2006.869826
    [10]
    Hormozan Y, Yun S H, Svenonius O, et al. Towards high-resolution X-ray imaging using a structured scintillator[J]. IEEE Transactions on Nuclear Science, 2012, 59(1): 19-23. doi: 10.1109/TNS.2011.2177477
    [11]
    Kleimann P, Linnros J, Fröjdh C, et al. An X-ray imaging pixel detector based on scintillator filled pores in a silicon matrix[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 460(1): 15-19.
    [12]
    Cha B K, Lee D H, Kim B, et al. High-resolution X-ray imaging based on pixel-structured CsI: Tl scintillating screens for indirect X-ray image sensors[J]. Journal of the Korean Physical Society, 2011, 59(6): 3670-3673.
    [13]
    陈奇, 王国政, 王蓟, 等. 光电化学腐蚀法制备高长径比硅微通道[J]. 半导体技术, 2018, 43(3):216-220

    Chen Qi, Wang Guozheng, Wang Ji, et al. Fabrication of high aspect ratio silicon microchannel by photo-electrochemical etching[J]. Semiconductor Technology, 2018, 43(3): 216-220
    [14]
    Chen Hui, Gu Mu, Liu Xiaolin, et al. Simulated performances of pixelated CsI(Tl) scintillation screens with different micro-column shapes and array structures in X-ray imaging[J]. Scientific Reports, 2018, 8: 16819. doi: 10.1038/s41598-018-34852-3
    [15]
    丁富荣, 班勇, 夏宗璜. 辐射物理[M]. 北京: 北京大学出版社, 2004: 24-28

    Ding Furong, Ban Yong, Xia Zonghuang. Radiation physics[M]. Beijing: Peking University Press, 2004: 24-28
    [16]
    Physical Measurements Laboratory. X-ray form factor, attenuation, and scattering tables[DB/OL]. https://www.nist.gov/pml/x-ray-form-factor-attenuation-and-scattering-tables.
    [17]
    Samei E, Flynn M J, Reimann D A. A method for measuring the presampled MTF of digital radiographic systems using an edge test device[J]. Medical Physics, 1998, 25(1): 102-113. doi: 10.1118/1.598165
    [18]
    贾清刚, 王东明, 安洪振, 等. 基于蒙特卡洛方法的闪烁光纤阵列空间分辨率模拟[J]. 中国科学:技术科学, 2013, 43(12):1432-1438 doi: 10.1360/ze2013-43-12-1432

    Jia Qinggang, Wang Dongming, An Hongzhen, et al. Simulation of spatial resolution of scintillating fiber array based on Monte Carlo method[J]. SCIENTIA SINICA Technologica, 2013, 43(12): 1432-1438 doi: 10.1360/ze2013-43-12-1432
    [19]
    Simon M, Engel K J, Menser B, et al. X-ray imaging performance of scintillator-filled silicon pore arrays[J]. Medical Physics, 2008, 35(3): 968-981. doi: 10.1118/1.2839441
    [20]
    肖飞虎. 硅基微结构制作及其在X射线探测器研制中的应用研究[D]. 深圳: 深圳大学, 2017

    Xiao Feihu. Study on fabrication of silicon-based microstructures and its application in the X-ray detectors[D]. Shenzhen: Shenzhen University, 2017
    [21]
    王宇, 周燕萍, 李茂林, 等. 用于垂直腔面发射激光器的GaAs/AlGaAs的ICP刻蚀工艺研究[J]. 中国激光, 2020, 47:0401005 doi: 10.3788/CJL202047.0401005

    Wang Yu, Zhou Yanping, Li Maolin, et al. ICP etching process of GaAs/AlGaAs for vertical-cavity surface-emitting lasers[J]. Chinese Journal of Lasers, 2020, 47: 0401005 doi: 10.3788/CJL202047.0401005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article views (57) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return