Volume 36 Issue 7
May  2024
Turn off MathJax
Article Contents
Ou Haibin, Duan Shuchao, Wang Ganghua, et al. Two-dimensional simulation of dense plasma focus[J]. High Power Laser and Particle Beams, 2024, 36: 075001. doi: 10.11884/HPLPB202436.240001
Citation: Ou Haibin, Duan Shuchao, Wang Ganghua, et al. Two-dimensional simulation of dense plasma focus[J]. High Power Laser and Particle Beams, 2024, 36: 075001. doi: 10.11884/HPLPB202436.240001

Two-dimensional simulation of dense plasma focus

doi: 10.11884/HPLPB202436.240001
  • Received Date: 2024-01-03
  • Accepted Date: 2024-03-19
  • Rev Recd Date: 2024-03-19
  • Available Online: 2024-04-15
  • Publish Date: 2024-05-31
  • To investigate the motion law of the plasma sheath in a dense plasma focus (DPF) device and the influence of related design parameters, this paper uses a self-developed FOI program to conduct two-dimensional magnetohydrodynamic simulation of the plasma sheath motion process and focus formation process in the Mather type discharge chamber structure, and obtains results similar to the visible light experimental images of the Lawrence Livermore National Laboratory in the United States. At the same time, the influence of different pressure, current, anode radius and cathode-anode gap on the motion law of the plasma sheath is explored. The calculation results show that the plasma sheath will compress the gas radially with a certain degree of curvature, which is one of the reasons for the instability phenomenon; the axial velocity of plasma sheath is inversely proportional to the square root of pressure, and is proportional to the current. The larger the anode size of the device, the smaller the axial velocity of sheath. To increase the current, it is necessary to extend the anode length to match the focusing time with the current peak. The gap between cathode and anode has little effect on the axial motion process of plasma sheath near the anode.
  • loading
  • [1]
    郭洪生, 杨高照, 张建华, 等. 高强度、短脉冲中子源研制及其应用技术研究[C]//第三届全国核技术与应用学术研讨会会议资料文集. 2012: 95

    Guo Hongsheng, Yang Gaozhao, Zhang Jianhua, et al. Research on the development and application technology of high intensity and short pulse neutron sources[C]//The Third National Academic Symposium on Nuclear Technology and Applications. 2012: 95
    [2]
    Mather J W. Formation of a high-density deuterium plasma focus[J]. Physics of Fluids, 1965, 8(2): 366-377. doi: 10.1063/1.1761231
    [3]
    Filippov N V, Filippova T I, Vinogradov V P. Dense high-temperature plasma in a non-cylindrical Z-pinch compression[J]. Nuclear Fusion, 1962, S2: 577-587.
    [4]
    郭洪生, 李恩平, 何锡钧, 等. 影响DPF焦点装置中子稳定性的因素和改进措施[J]. 原子核物理评论, 2004, 21(3):214-217 doi: 10.3969/j.issn.1007-4627.2004.03.008

    Guo Hongsheng, Li Enping, He Xijun, et al. Method of stability of neutron yields on denser plasma focus[J]. Nuclear Physics Review, 2004, 21(3): 214-217 doi: 10.3969/j.issn.1007-4627.2004.03.008
    [5]
    李名加, 范娟, 章法强, 等. 稠密等离子体焦点装置研制[J]. 强激光与粒子束, 2018, 30:115002 doi: 10.11884/HPLPB201830.180230

    Li Mingjia, Fan Juan, Zhang Faqiang, et al. Development of dense plasma focus device[J]. High Power Laser and Particle Beams, 2018, 30: 115002 doi: 10.11884/HPLPB201830.180230
    [6]
    Hart P J. Plasma acceleration with coaxial electrodes[J]. The Physics of Fluids, 1962, 5(1): 38-47. doi: 10.1063/1.1706489
    [7]
    Lee S. Plasma focus radiative model: Review of the Lee model code[J]. Journal of Fusion Energy, 2014, 33(4): 319-335. doi: 10.1007/s10894-014-9683-8
    [8]
    Ay Y, Abd Al-Halim M A, Bourham M A. Simulation of the plasma sheath dynamics in a spherical plasma focus[J]. The European Physical Journal D, 2015, 69: 205. doi: 10.1140/epjd/e2015-60063-2
    [9]
    Li Hui, Li Shengtai, Jungman G, et al. Dense plasma focus modeling[R]. Los Alamos: Los Alamos National Laboratory, 2017.
    [10]
    Jiang S, Higginson D P, Link A, et al. Effect of polarity on beam and plasma target formation in a dense plasma focus[J]. Physics of Plasmas, 2019, 26: 042702. doi: 10.1063/1.5048423
    [11]
    Schmidt A, Anaya E, Anderson M, et al. First experiments and radiographs on the MegaJOuLe Neutron Imaging Radiography (MJOLNIR) dense plasma focus[J]. IEEE Transactions on Plasma Science, 2021, 49(11): 3299-3306. doi: 10.1109/TPS.2021.3106313
    [12]
    Petkov E, Jackson S, Dasgupta A, et al. Characterization of electron beams from a dense plasma focus[J]. Bulletin of the American Physical Society, 2018, 63.
    [13]
    段书超, 王刚华, 谢卫平, 等. FOI-PERFECT程序对电磁驱动高能量密度系统的三维弛豫磁流体力学模拟[J]. 强激光与粒子束, 2016, 28:045014 doi: 10.11884/HPLPB201628.125014

    Duan Shuchao, Wang Ganghua, Xie Weiping, et al. 3D relaxation MHD modeling with FOI-PERFECT code for electromagnetically driven HED systems[J]. High Power Laser and Particle Beams, 2016, 28: 045014 doi: 10.11884/HPLPB201628.125014
    [14]
    Duan Shuchao, Kan Mingxian, Xiao Bo, et al. Numerical modelling of inverse wire array Z-pinch magnetic reconnection[J]. AIP Advances, 2018, 8: 055018. doi: 10.1063/1.5029323
    [15]
    Duan Shuchao, Li Jing, Dan Jiakun, et al. A TVD implementation of constrained propagation for electromagnetic waves[J]. Advances and Applications in Fluid Mechanics, 2012, 12(2): 101-110.
    [16]
    Jin Shi, Xin Zhouping. The relaxation schemes for systems of conservation laws in arbitrary space dimensions[J]. Communications on Pure and Applied Mathematics, 1995, 48(3): 235-276. doi: 10.1002/cpa.3160480303
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (535) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return