Volume 36 Issue 9
Aug.  2024
Turn off MathJax
Article Contents
Mi Zhikai, Nie Fengming, Huang Siling, et al. Predictive modeling of the surface pattern of double-sided polishing process of optical components[J]. High Power Laser and Particle Beams, 2024, 36: 091001. doi: 10.11884/HPLPB202436.240068
Citation: Mi Zhikai, Nie Fengming, Huang Siling, et al. Predictive modeling of the surface pattern of double-sided polishing process of optical components[J]. High Power Laser and Particle Beams, 2024, 36: 091001. doi: 10.11884/HPLPB202436.240068

Predictive modeling of the surface pattern of double-sided polishing process of optical components

doi: 10.11884/HPLPB202436.240068
  • Received Date: 2024-02-29
  • Accepted Date: 2024-05-09
  • Rev Recd Date: 2024-05-08
  • Available Online: 2024-05-22
  • Publish Date: 2024-08-16
  • To address the challenge of establishing a stable removal function for double-sided polishing to predict the finished surface profile, we use the coordinate transformation method to derive the relative velocity distribution equations for the upper and lower surfaces of the component. Subsequently, static pressure distributions on both surfaces are simulated using ANSYS software. The simulation data is then imported into Matlab and fitted with a polynomial method to determine the time-varying pressure distribution formulas for the component's surfaces. Based on the Preston equation, an expression for the correction coefficient K is derived. The value of the correction coefficient K is calculated to be 2.588×10−15 from four sets of polishing experimental data, enabling the construction of a predictive model for the surface pattern in double-sided polishing processes. The predictive model is ultimately validated through machining experiments. The experimental results indicate that the error in predicting the PV (Peak-to-Valley) value accounts for 1.07% to 7.4% of the actual PV value after processing, demonstrating good agreement between the predicted model and the actual post-processing surface pattern.
  • loading
  • [1]
    Campbell J H, Hawley-Fedder R A, Stolz C J, et al. NIF optical materials and fabrication technologies: an overview[C]//Proceedings of SPIE 5341, Optical Engineering at the Lawrence Livermore National Laboratory II: The National Ignition Facility. 2004: 84-101.
    [2]
    Satake U, Enomoto T, Fujii K, et al. Optimization method for double-sided polishing process based on kinematical analysis[J]. Procedia CIRP, 2016, 41: 870-874. doi: 10.1016/j.procir.2015.12.043
    [3]
    Hashimoto Y, Ozaki R, Furumoto T, et al. A calculation method for workpiece profile variation during double-sided lapping by considering workpiece elastic deformation[J]. Precision Engineering, 2022, 73: 457-469. doi: 10.1016/j.precisioneng.2021.09.016
    [4]
    王春阳, 帅闻, 肖博, 等. 基于环摆式双面抛光法加工预测模型的去除均匀性研究[J]. 光学学报, 2023, 43:0914001 doi: 10.3788/AOS221863

    Wang Chunyang, Shuai Wen, Xiao Bo, et al. Uniformity removal based on processing prediction model of ring-pendulum double-sided polishing method[J]. Acta Optica Sinica, 2023, 43: 0914001 doi: 10.3788/AOS221863
    [5]
    李振兴, 柏伟, 王琰璋, 等. 大尺寸非规则碲锌镉晶片双面抛光技术[J]. 人工晶体学报, 2023, 52(2):244-251

    Li Zhenxing, Bai Wei, Wang Yanzhang, et al. Study on double sided polishing technology of large size irregular CdZnTe wafer[J]. Journal of Synthetic Crystals, 2023, 52(2): 244-251
    [6]
    陈庚豪. 3英寸AT切石英晶圆抛光片内非均匀性研究[D]. 武汉: 华中科技大学, 2022

    CHEN Genghao. Research on non-uniformity of polishing 3-inch AT-cut quartz crystal wafer[D]. Wuhan: Huazhong University of Science and Technology, 2022
    [7]
    林涛. 基于磨粒磨损机制的光学元件快速抛光关键技术研究[D]. 厦门: 厦门大学, 2017

    Li Tao. Research on the optical element fast polishing key technology based on the abrasive wear mechanism[D]. Xiamen: Xiamen University, 2017
    [8]
    徐雳, 刘冰, 吴石, 等. 双面研磨/抛光机磨削轨迹研究[J]. 哈尔滨理工大学学报, 2018, 23(4):43-50

    Xu Li, Liu Bing, Wu Shi, et al. Double-sided lapping/polishing machine grinding trajectory studies[J]. Journal of Harbin University of Science and Technology, 2018, 23(4): 43-50
    [9]
    郭磊, 明子航, 靳淇超, 等. 弹性基体磨具的磨抛轨迹与表面加工质量研究[J]. 表面技术, 2022, 51(12):255-268

    Guo Lei, Ming Zihang, Jin Qichao, et al. Polishing trajectory and surface machining quality of elastic matrix abrasive tool[J]. Surface Technology, 2022, 51(12): 255-268
    [10]
    陈真, 杨炜, 郭隐彪. 快速抛光技术接触压力建模与仿真[J]. 厦门大学学报(自然科学版), 2012, 51(2):215-218

    Chen Zhen, Yang Wei, Guo Yinbiao. Modeling and simulation for contact pressure of fast polishing process[J]. Journal of Xiamen University (Natural Science), 2012, 51(2): 215-218
    [11]
    卢跃. 基于磨粒运动轨迹的端面磨削热力耦合过程分析[D]. 沈阳: 东北大学, 2019

    Lu Yue. Analysis of thermal mechanical coupling process of face grinding based on the movement trajectory of abrasive grains[D]. Shenyang: Northeastern University, 2019
    [12]
    王鹏里, 董志国, 轧刚, 等. 基于软性磨料流的Preston方程kp参数的修正与测定[J]. 科学技术与工程, 2018, 18(2):232-236

    Wang Pengli, Dong Zhiguo, Ya Gang, et al. Modification and determination of the Preston equation kp parameter based on soft abrasive flow[J]. Science Technology and Engineering, 2018, 18(2): 232-236
    [13]
    Hashimoto Y, Furumoto T, Sato T, et al. Novel method to visualize Preston’s coefficient distribution for chemical mechanical polishing process[J]. Japanese Journal of Applied Physics, 2022, 61: 116502. doi: 10.35848/1347-4065/ac916b
    [14]
    樊成. 光学曲面确定性抛光的面型精度控制研究[D]. 长春: 吉林大学, 2014

    Fan Cheng. Investigation on control of surface form accuracy for deterministic polishing of optical part surfaces[D]. Changchun: Jilin University, 2014
    [15]
    Wang Lijuan, Hu Zhongwei, Fang Congfu, et al. Study on the double-sided grinding of sapphire substrates with the trajectory method[J]. Precision Engineering, 2018, 51: 308-318. doi: 10.1016/j.precisioneng.2017.09.001
    [16]
    Bai Yifan, Xiao Bo, Wang Chunyang, et al. Polishing uniformity analysis and process optimization based on the kinematic model of ring pendulum double-sided polisher[J]. The International Journal of Advanced Manufacturing Technology, 2023, 126(11/12): 5689-5701.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article views (766) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return