Volume 36 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
Cheng Deqi, Yang Yiwei, Wang Shilan, et al. Electron FLASH-RT dosimetry simulation and experimental research[J]. High Power Laser and Particle Beams, 2024, 36: 109001. doi: 10.11884/HPLPB202436.240096
Citation: Cheng Deqi, Yang Yiwei, Wang Shilan, et al. Electron FLASH-RT dosimetry simulation and experimental research[J]. High Power Laser and Particle Beams, 2024, 36: 109001. doi: 10.11884/HPLPB202436.240096

Electron FLASH-RT dosimetry simulation and experimental research

doi: 10.11884/HPLPB202436.240096
  • Received Date: 2024-03-14
  • Accepted Date: 2024-09-09
  • Rev Recd Date: 2024-09-09
  • Available Online: 2024-09-13
  • Publish Date: 2024-10-15
  • This study aims to evaluate the dosimetric characteristics of electron FLASH-RT by combining experimental measurements with numerical simulations. In the experiment, EBT3 films were used to measure doses in solid water phantoms, while the MCNP5 program was employed to simulate and verify beam characteristics. The experimental platform was constructed based on a 9 MeV electron linear accelerator, and by adjusting the accelerator parameters, an ultra-high dose rate of 250 Gy/s was achieved at a source-to-surface distance of 1 m. The maximum deviation between experimental and simulated results in dose distribution did not exceed 5%, and the beam flatness was controlled within 3%. Key dose rate assessments show that the accelerator can work at maximum conditions to achieve the ultra-high dose rate required for the FLASH effect. Off-axis dose variation studies indicate that the presence of a water layer in the extraction window improved the uniformity of the beam. Central axis depth dose distribution analysis showes that the simulation and experimental results matched well at a water layer thickness of 10 mm. The two-dimensional dose distribution showes that the simulation results are consistent with the EBT3 film measurements. The study results demonstrate that the electron FLASH-RT experimental platform can provide the required ultra-high dose rate, and there is a high degree of consistency between experimental and simulation results, providing important dosimetric parameters and beam characteristic references for further research and application of FLASH-RT.
  • loading
  • [1]
    Durante M, Bräuer-Krisch E, Hill M. Faster and safer? FLASH ultra-high dose rate in radiotherapy[J]. British Journal of Radiology, 2018, 91: 20170628.
    [2]
    Favaudon V, Caplier L, Monceau V, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice[J]. Science Translational Medicine, 2014, 6: 245ra93.
    [3]
    Lin Binwei, Gao Feng, Yang Yiwei, et al. FLASH radiotherapy: history and future[J]. Frontiers in Oncology, 2021, 11: 644400. doi: 10.3389/fonc.2021.644400
    [4]
    Lempart M, Blad B, Adrian G, et al. Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation[J]. Radiotherapy and Oncology, 2019, 139: 40-45. doi: 10.1016/j.radonc.2019.01.031
    [5]
    Schüler E, Trovati S, King G, et al. Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator[J]. International Journal of Radiation Oncology·Biology·Physics, 2017, 97(1): 195-203.
    [6]
    Lansonneur P, Favaudon V, Heinrich S, et al. Simulation and experimental validation of a prototype electron beam linear accelerator for preclinical studies[J]. Physica Medica, 2019, 60: 50-57. doi: 10.1016/j.ejmp.2019.03.016
    [7]
    Mcmanus M, Romano F, Lee N D, et al. The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate very high energy electron beams[J]. Scientific Reports, 2020, 10: 9089. doi: 10.1038/s41598-020-65819-y
    [8]
    Burns D T, McEwen M R. Ion recombination corrections for the NACP parallel-plate chamber in a pulsed electron beam[J]. Physics in Medicine & Biology, 1998, 43(8): 2033-2045.
    [9]
    Karsch L, Beyreuther E, Burris-Mog T, et al. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors[J]. Medical Physics, 2012, 39(5): 2447-2455. doi: 10.1118/1.3700400
    [10]
    Jaccard M, Petersson K, Buchillier T, et al. High dose-per-pulse electron beam dosimetry: usability and dose-rate independence of EBT3 Gafchromic films[J]. Medical Physics, 2017, 44(2): 725-735. doi: 10.1002/mp.12066
    [11]
    Gao Feng, Yang Yiwei, Zhu Hongyu, et al. First demonstration of the FLASH effect with ultrahigh dose rate high-energy X-rays[J]. Radiotherapy and Oncology, 2022, 166: 44-50. doi: 10.1016/j.radonc.2021.11.004
    [12]
    单李军, 周征, 羊奕伟, 等. 10MeV、>80Gy/s@1m的光子FLASH放疗射线源[J]. 强激光与粒子束, 2023, 35:124009 doi: 10.11884/HPLPB202335.230412

    Shan Lijun, Zhou Zheng, Yang Yiwei, et al. >80 Gy/s@1 m FLASH photon source at 10 MeV[J]. High Power Laser and Particle Beams, 2023, 35: 124009 doi: 10.11884/HPLPB202335.230412
    [13]
    Robinson S M, Esplen N, Wells D, et al. Monte Carlo simulations of EBT3 film dose deposition for percentage depth dose (PDD) curve evaluation[J]. Journal of Applied Clinical Medical Physics, 2020, 21(12): 314-324. doi: 10.1002/acm2.13078
    [14]
    管永红, 黄娇凤, 刘进, 等. 蒙特卡罗技术在放射诊断剂量快速计算中的应用[J]. 强激光与粒子束, 2013, 25(1):193-195 doi: 10.3788/HPLPB20132501.0193

    Guan Yonghong, Huang Jiaofeng, Liu Jin, et al. Application of Monte Carlo technology to fast dose calculation of radiation therapy[J]. High Power Laser and Particle Beams, 2013, 25(1): 193-195 doi: 10.3788/HPLPB20132501.0193
    [15]
    宋婷, 周凌宏. 基于蒙特卡罗方法的6 MV Truebeam剂量计算[J]. 强激光与粒子束, 2012, 24(12):2975-2978 doi: 10.3788/HPLPB20122412.2975

    Song Ting, Zhou Linghong. Dose calculation of 6 MV Truebeam using Monte Carlo method[J]. High Power Laser and Particle Beams, 2012, 24(12): 2975-2978 doi: 10.3788/HPLPB20122412.2975
    [16]
    Musolino S V. Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water; Technical reports series No. 398[J]. Health Physics, 2001, 81(5): 592-593.
    [17]
    Shalek R J. Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures[J]. Medical Physics, 1977, 4: 461. doi: 10.1118/1.594356
    [18]
    Gerbi B J, Kirova Y M, Orecchia R. Clinical applications of high-energy electrons[M]//Levitt S H, Purdy J A, Perez C A, et al. Technical basis of radiation therapy: Practical clinical applications. 5th ed. Berlin: Springer, 2012: 157-196.
    [19]
    Khan F M, Doppke K P, Hogstrom K R, et al. Clinical electron-beam dosimetry: Report of AAPM radiation therapy committee task group No. 25[J]. Medical Physics, 1991, 18(1): 73-109. doi: 10.1118/1.596695
    [20]
    Ibbott G S. Radiation dosimetry: Electron beams with energies between 1 and 50 MeV (ICRU report No. 35)[J]. Medical Physics, 1985, 12: 813. doi: 10.1118/1.595780
    [21]
    Khan F M, Higgins P D, Gerbi B J, et al. Calculation of depth dose and dose per monitor unit for irregularly shaped electron fields[J]. Physics in Medicine & Biology, 1998, 43(10): 2741-2754.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article views (622) PDF downloads(82) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return