Volume 36 Issue 7
May  2024
Turn off MathJax
Article Contents
Wang Jianguo. Magnetohydrodynamic electromagnetic pulse produced by high altitude nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36: 073001. doi: 10.11884/HPLPB202436.240105
Citation: Wang Jianguo. Magnetohydrodynamic electromagnetic pulse produced by high altitude nuclear explosion[J]. High Power Laser and Particle Beams, 2024, 36: 073001. doi: 10.11884/HPLPB202436.240105

Magnetohydrodynamic electromagnetic pulse produced by high altitude nuclear explosion

doi: 10.11884/HPLPB202436.240105
  • Received Date: 2024-03-25
  • Accepted Date: 2024-05-01
  • Rev Recd Date: 2024-05-01
  • Available Online: 2024-05-13
  • Publish Date: 2024-05-31
  • The magnetohydrodynamic (late-time) electromagnetic pulse (E3) generated by high-altitude nuclear explosions has a serious impact on national key infrastructures such as the power system. Due to the complex mechanism of late-time electromagnetic pulse generation and many dependent factors, including explosion yield, explosion height, explosion orientation, explosion time, observation point position and soil conductivity, there is no available mature code that can simulate the whole generation process of late-time electromagnetic pulse. This paper introduces the generation mechanism of late-time electromagnetic pulse, discusses the relationship between the electric field of late-time electromagnetic pulse and the change of explosive yield of nuclear devices, explosive height, and atmospheric conditions. The electric field peak of E3A increases linearly with the explosion equivalent, while the electric field peak of E3B shows obvious saturation effect with the explosion equivalent increase. The current status of the simulation code of late-time electromagnetic pulse is analyzed, and it can provide a reference for further research on the numerical simulation method and code development of late-time electromagnetic pulse.
  • loading
  • [1]
    王建国, 牛胜利, 张殿辉, 等. 高空核爆炸效应参数手册[M]. 北京: 原子能出版社, 2010

    Wang Jianguo, Niu Shengli, Zhang Dianhui, et al. The parameter manual book of high-altitude nuclear explosion effects[M]. Beijing: Atomic Energy Press, 2010
    [2]
    王建国, 刘利, 牛胜利, 等. 高空核爆炸环境数值模拟[J]. 现代应用物理, 2023, 14:010101 doi: 10.12061/j.issn.2095-6223.2023.010101

    Wang Jianguo, Liu Li, Niu Shengli, et al. Numerical simulations of environmental parameters of high-altitude nuclear explosion[J]. Modern Applied Physics, 2023, 14: 010101 doi: 10.12061/j.issn.2095-6223.2023.010101
    [3]
    Lee K S H. EMP interaction: principles, techniques, and reference data[M]. Washington: Hemisphere Publishing Corporation, 1986.
    [4]
    Baum C E. From the electromagnetic pulse to high-power electromagnetics[J]. Proceedings of the IEEE, 1992, 80(6): 789-817. doi: 10.1109/5.149443
    [5]
    Li Ya, Liu Li, Wang Jianguo, et al. Numerical simulation of the intermediate-time high-altitude electromagnetic pulse[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(5): 1423-1430. doi: 10.1109/TEMC.2022.3179676
    [6]
    Karzas W J, Latter R. The electromagnetic signal due to the interaction of nuclear explosions with the earth’s magnetic field[J]. Journal of Geophysical Research, 1962, 67(12): 4635-4640. doi: 10.1029/JZ067i012p04635
    [7]
    高银军, 闫凯, 田宙, 等. 强爆炸早期火球光辐射能谱的数值计算[J]. 爆炸与冲击, 2015, 35(3):289-295 doi: 10.11883/1001-1455-(2015)03-0289-07

    Gao Yinjun, Yan Kai, Tian Zhou, et al. Numerical calculation of early fireball radiation spectrum in strong explosion[J]. Explosion and Shock Waves, 2015, 35(3): 289-295 doi: 10.11883/1001-1455-(2015)03-0289-07
    [8]
    高银军, 闫凯, 田宙, 等. 基于辐流计算的强爆炸火球光辐射功率走时研究[J]. 固体力学学报, 2013, 33(s1):95-98

    Gao Yinjun, Yan Kai, Tian Zhou, et al. Investigation of fireball radiation power-time history in strong explosion basing on radiation hydrodynamics calculation[J]. Chinese Journal of Solid Mechanics, 2013, 33(s1): 95-98
    [9]
    杨斌, 牛胜利, 朱金辉, 等. 高空核爆炸碎片云早期扩展规律研究[J]. 物理学报, 2012, 61:202801 doi: 10.7498/aps.61.202801

    Yang Bin, Niu Shengli, Zhu Jinhui, et al. Research of the early debris expansion from high-altitude nuclear explosions[J]. Acta Physica Sinica, 2012, 61: 202801 doi: 10.7498/aps.61.202801
    [10]
    陶应龙, 王建国, 牛胜利, 等. 高空核爆炸瞬发辐射电离效应的数值模拟[J]. 物理学报, 2010, 59(8):5914-5920 doi: 10.7498/aps.59.5914

    Tao Yinglong, Wang Jianguo, Niu Shengli, et al. Numerical simulation of the ionization effects of prompt radiation from high-altitude nuclear explosions[J]. Acta Physica Sinica, 2010, 59(8): 5914-5920 doi: 10.7498/aps.59.5914
    [11]
    牛胜利, 罗旭东, 王建国, 等. 高空核爆炸注入辐射带电子的大气扩散损失[J]. 计算物理, 2011, 28(4):569-575 doi: 10.3969/j.issn.1001-246X.2011.04.015

    Niu Shengli, Luo Xudong, Wang Jianguo, et al. Atmospheric diffusion loss of radiation belt trapped electrons injected by high altitude nuclear detonation[J]. Chinese Journal of Computational Physics, 2011, 28(4): 569-575 doi: 10.3969/j.issn.1001-246X.2011.04.015
    [12]
    顾旭东, 赵正予, 倪彬彬, 等. 高空核爆炸形成人工辐射带的数值模拟[J]. 物理学报, 2009, 58(8):5871-5878 doi: 10.3321/j.issn:1000-3290.2009.08.117

    Gu Xudong, Zhao Zhengyu, Ni Binbin, et al. Numerical simulation of the formation of artificial radiation belt caused by high altitude nuclear detonation[J]. Acta Physica Sinica, 2009, 58(8): 5871-5878 doi: 10.3321/j.issn:1000-3290.2009.08.117
    [13]
    乔登江. 核爆炸物理概论[M]. 北京: 国防工业出版社, 2003

    Qiao Dengjiang. Introduction to the physics of nuclear explosion[M]. Beijing: Defense Industry Press, 2003
    [14]
    Meng Cui. Numerical simulation of the HEMP environment[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(3): 440-445. doi: 10.1109/TEMC.2013.2258024
    [15]
    Li Ya, Wang Jianguo, Zuo Yinghong, et al. Simulation of high-altitude nuclear electromagnetic pulse using a modified model of scattered gamma[J]. IEEE Transactions on Nuclear Science, 2020, 67(12): 2474-2480. doi: 10.1109/TNS.2020.3031320
    [16]
    Campione S, Warne L K, Halligan M, et al. Modeling E1/E2 EMP events on power grids[R]. SAND2018-8324PE, Albuquerque: Sandia National Lab. , 2018.
    [17]
    Foster Jr J S, Gjelde E, Graham W R, et al. Report of the commission to assess the threat to the United States from electromagnetic pulse (EMP) attack[R]. 2008.
    [18]
    Pierre B J, Krofcheck D J, Hoffman M J, et al. Modeling framework for bulk electric grid impacts from HEMP E1 and E3 effects (tasks 3.1 final report)[R]. SAND2021-0865, Albuquerque: Sandia National Lab. , 2021.
    [19]
    Horton R. Magnetohydrodynamic electromagnetic pulse assessment of the continental US electric grid[R]. Electric Power Research Institute, 2017.
    [20]
    Li Ya, Wang Jianguo, Zuo Yinghong, et al. Sensitivity analysis of conductivity models in simulation of high-altitude electromagnetic pulse[J]. IEEE Transactions on Electromagnetic Compatibility, 2022, 64(6): 2094-2103. doi: 10.1109/TEMC.2022.3208428
    [21]
    谢海燕. 系统级HEMP耦合分析方法研究进展[J]. 现代应用物理, 2023, 14(2):020102 doi: 10.12061/j.issn.2095-6223.2023.020102

    Xie Haiyan. Research progress of system level HEMP coupling analysis methods[J]. Modern Applied Physics, 2023, 14(2): 020102 doi: 10.12061/j.issn.2095-6223.2023.020102
    [22]
    王建国, 刘国治, 周金山. 微波孔缝线性耦合函数研究[J]. 强激光与粒子束, 2003, 15(11):1093-1099

    Wang Jianguo, Liu Guozhi, Zhou Jinshan. Investigations on function for linear coupling of microwaves into slots[J]. High Power Laser and Particle Beams, 2003, 15(11): 1093-1099
    [23]
    Chen Juan, Wang Jianguo. A three-dimensional semi-implicit FDTD scheme for calculation of shielding effectiveness of enclosure with thin slots[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 49(2): 354-360. doi: 10.1109/TEMC.2007.893329
    [24]
    张俊杰, 彭国良, 任泽平. 高空核爆炸早期碎片等离子体模拟[J]. 现代应用物理, 2023, 14(3):020401 doi: 10.12061/j.issn.2095-6223.2023.020401

    Zhang Junjie, Peng Guoliang, Ren Zeping. Plasma simulation for early-stage debris in high altitude nuclear explosions[J]. Modern Applied Physics, 2023, 14(3): 020401 doi: 10.12061/j.issn.2095-6223.2023.020401
    [25]
    秦锋, 陈伟, 毛从光, 等. 电力系统高空电磁脉冲效应研究综述[J]. 现代应用物理, 2023, 14(3):030102

    Qin Feng, Chen Wei, Mao Congguang, et al. Review of high altitude electromagnetic pulse effects on power system[J]. Modern Applied Physics, 2023, 14(3): 030102
    [26]
    Wilson C. High altitude electromagnetic pulse (HEMP) and high power microwave (HPM) devices: threat assessments[R]. Washington: Congressional Research Service, 2004.
    [27]
    Gilbert J, Kappenman J, Radasky W, et al. The late-time (E3) high-altitude electromagnetic pulse (HEMP) and its impact on the U. S. power grid[R]. Meta-R-321, Metatech Corporation, 2010.
    [28]
    IEC 61000-2-9: 1996, Electromagnetic compatibility (EMC) - part 2: environment - section 9: description of HEMP environment - radiated disturbance. Basic EMC publication[S].
    [29]
    刘利, 左应红, 牛胜利, 等. 中子及次级γ在高空长距离蒙特卡罗输运模拟中的减方差方法[J]. 现代应用物理, 2022, 13:010202

    Liu Li, Zuo Yinghong, Niu Shengli, et al. A varaince reduction method for simulating the long-distance transport of neutrons and secondary γ in high-altitude atmosphere by Monte Carlo method[J]. Modern Applied Physics, 2022, 13: 010202
    [30]
    朱金辉, 左应红, 刘利, 等. 蒙特卡罗方法在核爆辐射环境模拟中的应用与发展[J]. 现代应用物理, 2023, 14:030104

    Zhu Jinhui, Zuo Yinghong, Liu Li, et al. Application and development of Monte Carlo method in simulation of nuclear explosion radiation environments[J]. Modern Applied Physics, 2023, 14: 030104
    [31]
    彭国良, 张俊杰. 基于流体-磁流体-粒子混合方法的高空核爆炸碎片云模拟[J]. 物理学报, 2021, 70:180703 doi: 10.7498/aps.70.20210347

    Peng Guoliang, Zhang Junjie. Hydro-magneto-PIC hybrid model for description of debris motion in high altitude nuclear explosions[J]. Acta Physica Sinica, 2021, 70: 180703 doi: 10.7498/aps.70.20210347
    [32]
    Keenan B D, Le A, Winske D, et al. Hybrid particle-in-cell simulations of electromagnetic coupling and waves from streaming burst debris[J]. Physics of Plasmas, 2022, 29: 012107. doi: 10.1063/5.0075482
    [33]
    Belyaev M A, Larson D J, Cohen B I, et al. Topanga: a kinetic ion plasma code for large-scale ionospheric simulations on magnetohydrodynamic timescales[J]. Physics of Plasmas, 2024, 31: 012902. doi: 10.1063/5.0177132
    [34]
    Le A, Stanier A, Yin Lin, et al. Hybrid-VPIC: an open-source kinetic/fluid hybrid particle-in-cell code[J]. Physics of Plasmas, 2023, 30: 063902. doi: 10.1063/5.0146529
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (1586) PDF downloads(174) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return