Volume 36 Issue 9
Aug.  2024
Turn off MathJax
Article Contents
Cao Haoyue, Zhao Chen, Liu Jing, et al. Three-dimensional reconstruction system for transparent samples based on phase retrieval[J]. High Power Laser and Particle Beams, 2024, 36: 091003. doi: 10.11884/HPLPB202436.240128
Citation: Cao Haoyue, Zhao Chen, Liu Jing, et al. Three-dimensional reconstruction system for transparent samples based on phase retrieval[J]. High Power Laser and Particle Beams, 2024, 36: 091003. doi: 10.11884/HPLPB202436.240128

Three-dimensional reconstruction system for transparent samples based on phase retrieval

doi: 10.11884/HPLPB202436.240128
  • Received Date: 2024-04-16
  • Accepted Date: 2024-07-01
  • Rev Recd Date: 2024-07-01
  • Available Online: 2024-07-09
  • Publish Date: 2024-08-16
  • In response to the difficulties posed by traditional microscopy imaging techniques in capturing the structure and thickness of colorless transparent samples, we have designed a miniature three-dimensional reconstruction system for such samples. This innovative system, breaking away from traditional optical structures, performs phase retrieval on transparent samples to achieve three-dimensional reconstruction. It requires only light carrying sample information, which is then bifurcated by a spectroscope and captured by a stereo camera. Constructed using 3D printing technology, the compact system measures just 110 mm×110 mm×60 mm, offering a cost-effective solution that is also compatible with traditional microscopy imaging equipment. It incorporates autofocus and field of view correction algorithms, which, by collecting one over-focused and one under-focused image, solve the transport intensity equation to enable phase retrieval and hence the three-dimensional reconstruction of transparent samples. Test results have shown that the system can achieve an imaging resolution of 2.46 μm under a 10× objective lens, and the phase recovery accuracy can also meet the basic requirements. Furthermore, the successful three-dimensional reconstruction of blood cells and scratches on microscope slides validates the system's feasibility and practicality.
  • loading
  • [1]
    左超, 陈钱. 计算光学成像: 何来, 何处, 何去, 何从?[J]. 红外与激光工程, 2022, 51:20220110 doi: 10.3788/IRLA20220110

    Zuo Chao, Chen Qian. Computational optical imaging: an overview[J]. Infrared and Laser Engineering, 2022, 51: 20220110 doi: 10.3788/IRLA20220110
    [2]
    Jiang Fuda, Zhang Chonglei. High accuracy quantitative phase imaging based on transport-of-intensity equation[J]. Optics and Lasers in Engineering, 2023, 169: 107700. doi: 10.1016/j.optlaseng.2023.107700
    [3]
    Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine[J]. Nature Photonics, 2018, 12(10): 578-589. doi: 10.1038/s41566-018-0253-x
    [4]
    Zuo Chao, Li Jiaji, Sun Jiasong, et al. Transport of intensity equation: a tutorial[J]. Optics and Lasers in Engineering, 2020, 135: 106187. doi: 10.1016/j.optlaseng.2020.106187
    [5]
    何璇. 明场、暗场、相衬的多模显微镜成像技术研究[D]. 成都: 电子科技大学, 2017

    He Xuan. Research on multi-mode microscopy imaging technology of brightfield, darkfield, phase contrast[D]. Chengdu: University of Electronic Science and Technology of China, 2017
    [6]
    Trattner S, Kashdan E, Feigin M, et al. Image formation of thick three-dimensional objects in differential-interference-contrast microscopy[J]. Journal of the Optical Society of America A, 2014, 31(5): 968-980. doi: 10.1364/JOSAA.31.000968
    [7]
    左超, 陈钱, 孙佳嵩, 等. 基于光强传输方程的非干涉相位恢复与定量相位显微成像: 文献综述与最新进展[J]. 中国激光, 2016, 43:0609002 doi: 10.3788/CJL201643.0609002

    Zuo Chao, Chen Qian, Sun Jiasong, et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation: a review[J]. Chinese Journal of Lasers, 2016, 43: 0609002 doi: 10.3788/CJL201643.0609002
    [8]
    桂博瀚, 李常伟. 基于波面分割及多平面相位恢复的定量相位成像技术[J]. 光学学报, 2023, 43:1411002 doi: 10.3788/AOS230451

    Gui Bohan, Li Changwei. Quantitative phase imaging technology based on wavefront segmentation and multiplane phase retrieval[J]. Acta Optica Sinica, 2023, 43: 1411002 doi: 10.3788/AOS230451
    [9]
    张赵. 基于光强传输方程的相位恢复与多模式成像研究[D]. 南京: 南京理工大学, 2017

    Zhang Zhao. Phase retrieval and multi-mode imaging based on light intensity transfer equation[D]. Nanjing: University of Nanjing University of Science and Technology, 2017
    [10]
    Cheng Hong, Wang Jincheng, Gao Yaoli, et al. Phase unwrapping based on transport-of-intensity equation with two wavelengths[J]. Optical Engineering, 2019, 58: 054103.
    [11]
    Grant S D, Richford K, Burdett H L, et al. Low-cost, open-access quantitative phase imaging of algal cells using the transport of intensity equation[J]. Royal Society Open Science, 2020, 7: 191921. doi: 10.1098/rsos.191921
    [12]
    Chen Chao, Lu Y Yunan, Huang Huachuan, et al. PhaseRMiC: phase real-time microscope camera for live cell imaging[J]. Biomedical Optics Express, 2021, 12(8): 5261-5271. doi: 10.1364/BOE.430115
    [13]
    Liu Cheng, Wang Shouyu, Veetil S P. Computational optical phase imaging[M]. Singapore: Springer, 2022.
    [14]
    Carney S, Khoo T C, Sheikhsofla A, et al. Quantitative phase imaging comparison of digital holographic microscopy and transport of intensity equation phase through simultaneous measurements of live cells[J]. Optics and Lasers in Engineering, 2023, 166: 107581. doi: 10.1016/j.optlaseng.2023.107581
    [15]
    Wang Shouyu, Huang Huachuan, Sun Aihui, et al. Dual-view transport of intensity phase imaging devices for quantitative phase microscopy applications[J]. Sensors & Diagnostics, 2024, 3(3): 381-394.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (535) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return