Volume 36 Issue 8
Jul.  2024
Turn off MathJax
Article Contents
Feng Wenliang, Meng Fanbao, Yu Chuan, et al. Siamese single-object tracking algorithm based on multiple attention mechanisms and response fusion[J]. High Power Laser and Particle Beams, 2024, 36: 089001. doi: 10.11884/HPLPB202436.240130
Citation: Feng Wenliang, Meng Fanbao, Yu Chuan, et al. Siamese single-object tracking algorithm based on multiple attention mechanisms and response fusion[J]. High Power Laser and Particle Beams, 2024, 36: 089001. doi: 10.11884/HPLPB202436.240130

Siamese single-object tracking algorithm based on multiple attention mechanisms and response fusion

doi: 10.11884/HPLPB202436.240130
  • Received Date: 2024-04-18
  • Accepted Date: 2024-05-30
  • Rev Recd Date: 2024-05-30
  • Available Online: 2024-06-13
  • Publish Date: 2024-07-04
  • In this paper, to address the problem that the single-object tracking algorithm of Siamese fully convolutional networks cannot extract the high-level semantic features of the object and cannot focus on and learn the channel, spatial and coordinate features of the object at one time, which leads to degradation of the tracking performance and tracking failures when faced with the challenges of the object's deformation, attitude changes, and background interference in a complex scenario, we propose a single-object tracking algorithm for Siamese networks based on the multiple-attention mechanism and response fusion. In this algorithm, three modules, namely, the backbone feature extraction network with small convolutional kernel fused with jump-layer connected features, the improved attention mechanism, and the response fusion operation after convolutional inter-correlation are designed to enhance the tracking performance of this algorithm, and the effectiveness of these three modules is verified by ablation experiments. Finally, after testing on the OTB100 benchmark dataset, the tracking accuracy reaches 0.825, and the tracking success rate reaches 0.618. Meanwhile, compared with other advanced algorithms, it shows that the algorithm not only can effectively cope with the problem of decreasing performance of object tracking algorithms in complex scenarios, but also can further improve the tracking accuracy under the premise of guaranteeing the tracking speed.
  • loading
  • [1]
    程旭, 崔一平, 宋晨, 等. 基于时空注意力机制的目标跟踪算法[J]. 计算机科学, 2021, 48(4):123-129 doi: 10.11896/jsjkx.200800164

    Cheng Xu, Cui Yiping, Song Chen, et al. Object tracking algorithm based on temporal-spatial attention mechanism[J]. Computer Science, 2021, 48(4): 123-129 doi: 10.11896/jsjkx.200800164
    [2]
    Zhao Jianguang, Cao Xinying. Research on target tracking algorithm in occlusion scene[J]. Journal of Physics: Conference Series, 2021, 1748: 032048. doi: 10.1088/1742-6596/1748/3/032048
    [3]
    尹宏鹏, 陈波, 柴毅, 等. 基于视觉的目标检测与跟踪综述[J]. 自动化学报, 2016, 42(10):1466-1489

    Yin Hongpeng, Chen Bo, Chai Yi, et al. Vision-based object detection and tracking: a review[J]. Acta Automatica Sinica, 2016, 42(10): 1466-1489
    [4]
    Zheng Chenyang, Usagawa T. A rapid webcam-based eye tracking method for human computer interaction[C]//IEEE International Conference on Control, Automation and Information Sciences. 2018: 133-136.
    [5]
    Li Kai, Cheng Jun, Zhang Qieshi, et al. Hand gesture tracking and recognition based human-computer interaction system and its applications[C]//IEEE International Conference on Information and Automation. 2018: 667-672.
    [6]
    Huang Kaiqi, Tan Tieniu. Vs-star: a visual interpretation system for visual surveillance[J]. Pattern Recognition Letters, 2010, 31(14): 2265-2285. doi: 10.1016/j.patrec.2010.05.029
    [7]
    Haritaoglu I, Harwood D, Davis L S. W4: real-time surveillance of people and their activities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 809-830. doi: 10.1109/34.868683
    [8]
    Shah M, Javed O, Shafique K. Automated visual surveillance in realistic scenarios[J]. IEEE MultiMedia, 2007, 14(1): 30-39. doi: 10.1109/MMUL.2007.3
    [9]
    Nalepka J P, Hinchman J L. Automated aerial refueling: extending the effectiveness of unmanned air vehicles[C]//AIAA Modeling and Simulation Technologies Conference and Exhibit. 2005.
    [10]
    Sharp C S, Shakernia O, Sastry S S. A vision system for landing an unmanned aerial vehicle[C]//IEEE International Conference on Robotics and Automation. 2001: 1720-1727.
    [11]
    Xu Guili, Zhang Yong, Ji Shengyu, et al. Research on computer vision-based for UAV autonomous landing on a ship[J]. Pattern Recognition Letters, 2009, 30(6): 600-605. doi: 10.1016/j.patrec.2008.12.011
    [12]
    Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional Siamese networks for object tracking[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2016: 850-865.
    [13]
    韩自强, 岳明凯, 张骢, 等. 基于孪生网络的无人机目标多模态融合检测[J]. 红外技术, 2023, 45(7):739-745

    Han Ziqiang, Yue Mingkai, Zhang Cong, et al. Multimodal fusion detection of UAV target based on Siamese network[J]. Infrared Technology, 2023, 45(7): 739-745
    [14]
    贺泽民, 曾俊涛, 袁宝玺, 等. 视觉跟踪技术中孪生网络的研究进展[J]. 液晶与显示, 2024, 39(2):192-204 doi: 10.37188/CJLCD.2023-0113

    He Zemin, Zeng Juntao, Yuan Baoxi, et al. Advances in twin network research in visual tracking technology[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(2): 192-204 doi: 10.37188/CJLCD.2023-0113
    [15]
    Li Peixia, Wang Dong, Wang Lijun, et al. Deep visual tracking: review and experimental comparison[J]. Pattern Recognition, 2018, 76: 323-338. doi: 10.1016/j.patcog.2017.11.007
    [16]
    Zhang Xuebai, Liu Xiaolong, Yuan S M, et al. Eye tracking based control system for natural human-computer interaction[J]. Computational Intelligence and Neuroscience, 2017, 2017: 5739301.
    [17]
    李玺, 查宇飞, 张天柱, 等. 深度学习的目标跟踪算法综述[J]. 中国图象图形学报, 2019, 24(12):2057-2080 doi: 10.11834/jig.190372

    Li Xi, Zha Yufei, Zhang Tianzhu, et al. Survey of visual object tracking algorithms based on deep learning[J]. Journal of Image and Graphics, 2019, 24(12): 2057-2080 doi: 10.11834/jig.190372
    [18]
    Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. 2012: 1097-1105.
    [19]
    Hou Qibin, Zhou Daquan, Feng Jiashi. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 13708-13717.
    [20]
    Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision (ECCV). 2018: 3-19.
    [21]
    Zhu Xizhou, Cheng Dazhi, Zhang Zheng, et al. An empirical study of spatial attention mechanisms in deep networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 6687-6696.
    [22]
    Huang Lianghua, Zhao Xin, Huang Kaiqi. GOT-10k: a large high-diversity benchmark for generic object tracking in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1562-1577. doi: 10.1109/TPAMI.2019.2957464
    [23]
    Wu Yi, Lim J, Yang M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848. doi: 10.1109/TPAMI.2014.2388226
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (605) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return