Volume 36 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
Wang Jincan, Zhang Zhenchi, Wang Zhi, et al. Generation and mitigation of electromagnetic pulses from pulsed intense magnetic field device in laser plasma experiments[J]. High Power Laser and Particle Beams, 2024, 36: 105001. doi: 10.11884/HPLPB202436.240136
Citation: Wang Jincan, Zhang Zhenchi, Wang Zhi, et al. Generation and mitigation of electromagnetic pulses from pulsed intense magnetic field device in laser plasma experiments[J]. High Power Laser and Particle Beams, 2024, 36: 105001. doi: 10.11884/HPLPB202436.240136

Generation and mitigation of electromagnetic pulses from pulsed intense magnetic field device in laser plasma experiments

doi: 10.11884/HPLPB202436.240136
  • Received Date: 2024-04-24
  • Accepted Date: 2024-09-05
  • Rev Recd Date: 2024-09-05
  • Available Online: 2024-09-13
  • Publish Date: 2024-10-15
  • Pulsed intense magnetic fields play an important role in the field of high power laser material interaction, while the electromagnetic pulse generated by pulsed intense magnetic field devices will disturb the signal measurement in laser plasma experiment. We measured the spatial distribution and spectral characteristics of electromagnetic pulse using Rogowski coils, high-voltage probes, antennas, and sampling resistors on the laser plasma experimental platform. It is found that the electromagnetic pulses come from the main discharge circuit of the pulsed intense magnetic field device, and the secondary circuit of charging and grounding. The electromagnetic pulses transform onto the vacuum target chamber through capacitive coupling between the transmission line and the flange on the vacuum target chamber that places the transmission line, and then enter the electronic devices through conductive coupling pathways, or enter the power grid or weak current cables through charging lines and grounding wires, and finally enter the electronic devices. Part of the free space electromagnetic pulse is directly coupled into cables and electronic devices. We depress the electromagnetic noise that enters the detector by disconnecting the conductive coupling path and shielding free space electromagnetic pulse. Experiments showed that the measured electromagnetic pulse amplitude, especially at the 0.14 MHz discharge main frequency component, was well suppressed, by physically disconnecting the electrical connection between the power grid and electronic equipment. Isolating the high-voltage power supply from the low-voltage grounding connection can decrease the electromagnetic noise markedly. Shielding shell and shielding cabinet that cover the electronic devices are available approaches to depress the free space and conductive coupled electromagnetic noise.
  • loading
  • [1]
    Chang P Y, Fiksel G, Hohenberger M, et al. Fusion yield enhancement in magnetized laser-driven implosions[J]. Physical Review Letters, 2011, 107: 035006. doi: 10.1103/PhysRevLett.107.035006
    [2]
    Gong Tao, Zheng Jian, Li Zhichao, et al. Mitigating stimulated scattering processes in gas-filled Hohlraums via external magnetic fields[J]. Physics of Plasmas, 2015, 22: 092706. doi: 10.1063/1.4931077
    [3]
    Schaeffer D B, Fox W, Haberberger D, et al. Generation and evolution of high-Mach-number laser-driven magnetized collisionless shocks in the laboratory[J]. Physical Review Letters, 2017, 119: 025001. doi: 10.1103/PhysRevLett.119.025001
    [4]
    Burris-Mog T, Harres K, Nürnberg F, et al. Laser accelerated protons captured and transported by a pulse power solenoid[J]. Physical Review Accelerators and Beams, 2011, 14: 121301. doi: 10.1103/PhysRevSTAB.14.121301
    [5]
    Gotchev O V, Chang P Y, Knauer J P, et al. Laser-driven magnetic-flux compression in high-energy-density plasmas[J]. Physical Review Letters, 2009, 103: 215004. doi: 10.1103/PhysRevLett.103.215004
    [6]
    Fiksel G, Agliata A, Barnak D, et al. Note: experimental platform for magnetized high-energy-density plasma studies at the omega laser facility[J]. Review of Scientific Instruments, 2015, 86: 016105. doi: 10.1063/1.4905625
    [7]
    Albertazzi B, Béard J, Ciardi A, et al. Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields[J]. Review of Scientific Instruments, 2013, 84: 043505. doi: 10.1063/1.4795551
    [8]
    Wang Yulin, Hu Guangyue, Hu Peng, et al. Compact pulsed intense magnetic field generator for Shenguang-II upgrade laser facility[J]. Journal of Instrumentation, 2019, 14: P09024. doi: 10.1088/1748-0221/14/09/P09024
    [9]
    Hu Peng, Zhao Jiayi, Wang Jincan, et al. Upgraded pulsed magnetic field generator for Shenguang-II laser facility toward 30 T[J]. Journal of Instrumentation, 2022, 17: P07036. doi: 10.1088/1748-0221/17/07/P07036
    [10]
    Hu Guangyue, Liang Yihan, Song Falun, et al. A 7 T pulsed magnetic field generator for magnetized laser plasma experiments[J]. Plasma Science and Technology, 2015, 17(2): 134-140. doi: 10.1088/1009-0630/17/2/07
    [11]
    Wang Yulin, Hu Guangyue, Hu Peng, et al. Portable pulsed magnetic field generator for magnetized laser plasma experiments in low vacuum environments[J]. Review of Scientific Instruments, 2019, 90: 075108. doi: 10.1063/1.5095541
    [12]
    Hu Peng, Hu Guangyue, Wang Yulin, et al. Pulsed magnetic field device for laser plasma experiments at Shenguang-Ⅱ laser facility[J]. Review of Scientific Instruments, 2020, 91: 014703. doi: 10.1063/1.5139613
    [13]
    Yang Ming, Li Tingshuai, Wang Chuanke, et al. Characterization of electromagnetic pulses via arrays on ShenGuang-III laser facility laser[J]. Chinese Optics Letters, 2016, 14: 101402. doi: 10.3788/COL201614.101402
    [14]
    Xu Yilin, Li Dongyu, Xia Yadong, et al. Analysis of electromagnetic pulses generated from ultrashort laser irradiation of solid targets at CLAPA[J]. Chinese Physics B, 2022, 31: 025205. doi: 10.1088/1674-1056/ac3735
    [15]
    Zhang Guangjin, Xia Yadong, Yi Tao, et al. Generation of electromagnetic impulse from laser irradiating targets and its propagation in the laser facility[J]. Fusion Engineering and Design, 2019, 141: 21-24. doi: 10.1016/j.fusengdes.2019.02.059
    [16]
    Yang Yu, Guo Xiaodong, Li Zihao, et al. Intense electromagnetic pulses generated from kJ-laser interacting with hohlraum targets[J]. IEEE Transactions on Nuclear Science, 2022, 69(9): 2027-2036. doi: 10.1109/TNS.2022.3187569
    [17]
    Yang Ming, Yang Yongmei, Li Tingshuai, et al. Electromagnetic radiations from laser interaction with gas-filled hohlraum[J]. Laser Physics Letters, 2018, 15: 016101. doi: 10.1088/1612-202X/aa94ec
    [18]
    Yang Yongmei, Yi Tao, Yang Ming, et al. Effect of target size on electromagnetic pulses generation from laser radiation with targets[J]. Laser Physics, 2019, 29: 016003. doi: 10.1088/1555-6611/aaf22a
    [19]
    Xia Yadong, Zhang Feng, Cai Hongbo, et al. Analysis of electromagnetic pulses generation from laser coupling with polymer targets: Effect of metal content in target[J]. Matter and Radiation at Extremes, 2020, 5: 017401. doi: 10.1063/1.5114663
    [20]
    He Q Y, Deng Z G, Meng L B, et al. Generation and regulation of electromagnetic pulses induced by hybrid laser pulses interacting with solid targets[J]. Nuclear Fusion, 2022, 62: 066006. doi: 10.1088/1741-4326/ac54cf
    [21]
    Xia Yadong, Li Dongyu, Zhang Siyuan, et al. Enhancing electromagnetic radiations by a pre-ablation laser during laser interaction with solid target[J]. Physics of Plasmas, 2020, 27: 032705. doi: 10.1063/1.5140585
    [22]
    He Qiangyou, Kang Ning, Ren Lei, et al. Spatial and temporal evolution of electromagnetic pulses generated at Shenguang-II series laser facilities[J]. Plasma Science and Technology, 2021, 23: 115202. doi: 10.1088/2058-6272/ac21b7
    [23]
    Yang Jinwen, Li Tingshuai, Yi Tao, et al. Electromagnetic pulses generated from laser target interactions at Shenguang II laser facility[J]. Plasma Science and Technology, 2016, 18(10): 1044-1048. doi: 10.1088/1009-0630/18/10/13
    [24]
    Consoli F, Tikhonchuk V T, Bardon M, et al. Laser produced electromagnetic pulses: generation, detection and mitigation[J]. High Power Laser Science and Engineering, 2020, 8: e22. doi: 10.1017/hpl.2020.13
    [25]
    易涛, 景峰, 王新彬, 等. 神光Ⅲ装置电磁脉冲测量[J]. 安全与电磁兼容, 2017(6):83-85

    Yi Tao, Jing Feng, Wang Xinbin, et al. Electromagnetic pulse measurement at ShenGuang III laser facility[J]. Safety & EMC, 2017(6): 83-85
    [26]
    易涛, 郑万国, 江少恩. 高功率激光装置电磁兼容设计[J]. 安全与电磁兼容, 2019(1):89-92

    Yi Tao, Zheng Wanguo, Jiang Shaoen. EMC design of high power laser facility experiments[J]. Safety & EMC, 2019(1): 89-92
    [27]
    何勇, 陈德怀, 林福昌, 等. 强激光脉冲电源电磁干扰的仿真与测试[J]. 强激光与粒子束, 2005, 17(6):921-924

    He Yong, Chen Dehuai, Lin Fuchang, et al. Simulation and measurement of electromagnetic interference in a pulsed supply of high power laser[J]. High Power Laser and Particle Beams, 2005, 17(6): 921-924
    [28]
    杨正华, 刘慎业, 肖绍球, 等. 神光Ⅲ原型装置靶室电磁干扰测量与分析[J]. 核电子学与探测技术, 2015, 35(2):210-214

    Yang Zhenghua, Liu Shenye, Xiao Shaoqiu, et al. Research of electric field pulse of Shenguang Ⅲ prototype laser facility target chamber[J]. Nuclear Electronics & Detection Technology, 2015, 35(2): 210-214
    [29]
    邱永峰. 高功率脉冲驱动源控制系统及电磁兼容性研究[D]. 长沙: 国防科技大学, 2018: 28-43

    Qiu Yongfeng. Investigation of control system and EMC based on high power pulse generator[D]. Changsha: National University of Defense Technology, 2018: 28-43
    [30]
    罗晓珊. 强流脉冲环境下的辐射干扰及抑制措施研究[D]. 武汉: 华中科技大学, 2014: 1-10

    Luo Xiaoshan. The research on the radiation interference and suppression measures in intense pulse current environment[D]. Wuhan: Huazhong University of Science and Technology, 2014: 1-10
    [31]
    路宏敏, 赵晓凡, 谭康伯, 等. 工程电磁兼容[M]. 3版. 西安: 西安电子科技大学出版社, 2019

    Lu Hongmin, Zhao Xiaofan, Tan Kangbo, et al. Engineering electromagnetic compatibility[M]. 3rd ed. Xi’an: Xidian University Press, 2019
    [32]
    赵佳羿, 胡鹏, 王雨林, 等. 用于激光等离子体中脉冲强磁场产生的电感耦合线圈[J]. 物理学报, 2021, 70:165202 doi: 10.7498/aps.70.20210441

    Zhao Jiayi, Hu Peng, Wang Yulin, et al. Optimization of pulsed intense magnetic field device for laser plasma experiment via inductively coupled coil[J]. Acta Physica Sinica, 2021, 70: 165202 doi: 10.7498/aps.70.20210441
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article views (878) PDF downloads(132) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return