| Citation: | Shang Wei, Su Jiancang, Zeng Bo, et al. Research on spherical graphite cast iron electrode based gas switch[J]. High Power Laser and Particle Beams, 2024, 36: 115014. doi: 10.11884/HPLPB202436.240141 |
| [1] |
刘锡三. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005
Liu Xisan. High pulsed power technology[M]. Beijing: National Defense Industry Press, 2005
|
| [2] |
曾正中. 实用脉冲功率技术引论[M]. 西安: 陕西科学技术出版社, 2003
Zeng Zhengzhong. Introduction to practical pulsed power technology[M]. Xi’an: Shaanxi Science and Technology Press, 2003
|
| [3] |
周传明, 刘国治, 刘永贵, 等. 高功率微波源[M]. 北京: 原子能出版社, 2007
Zhou Chuanming, Liu Guozhi, Liu Yonggui, et al. High-power microwave sources[M]. Beijing: Atomic Energy Press, 2007
|
| [4] |
Martin T H, Guenther A H, Kristiansen M. J. C. Martin on pulsed power[M]. New York: Springer, 1996.
|
| [5] |
Lehr J, Ron P. Foundations of pulsed power technology[M]. New York: Wiley-IEEE Press, 2017.
|
| [6] |
Jones Jr C H, Crewson W F J, Naff J T, et al. An analytical model for the high voltage rope switch[R]. Pulsar Associates Switching Note 19, 1973.
|
| [7] |
Maenchen J, Lehr J M, Warne L K, et al. Fundamental science investigations to develop a 6-MV laser triggered gas switch for ZR: first annual report[R]. SAND2007-0217, 2007.
|
| [8] |
Beveridge J R, MacGregor S J, Given M J, et al. A corona-stabilised plasma closing switch[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 948-955. doi: 10.1109/TDEI.2009.5211838
|
| [9] |
Gao Pengcheng, Su Jiancang, Zeng Bo, et al. A low-jitter self-break repetitive multi-stage gas switch[J]. Review of Scientific Instruments, 2017, 88: 024705. doi: 10.1063/1.4973420
|
| [10] |
曾搏, 苏建仓, 等. 一种陶瓷封装V/N触发多级气体开关[C]//第十一届全国高功率微波会议. 2017
Zeng Bo, Su Jiancang, et al. A ceramic package V/N triggers a multi-stage gas switch[C]//The 11th National High Power Microwave Conference. 2017
|
| [11] |
Su Jiancang, Zeng Bo, Gao Pengcheng, et al. A voltage-division-type low-jitter self-triggered repetition-rate switch[J]. Review of Scientific Instruments, 2016, 87: 105118. doi: 10.1063/1.4963659
|
| [12] |
Shang Wei, Su Jiancang, Zeng Bo, et al. A 1-MV low-jitter high-reliability multi-stage equal breakdown probability gas switch[J]. Physica Scripta, 2023, 98: 015013. doi: 10.1088/1402-4896/aca846
|
| [13] |
罗维熙, 丛培天, 孙铁平, 等. 电极材料对气体火花开关静态性能的影响[J]. 强激光与粒子束, 2016, 28:015022 doi: 10.11884/HPLPB201628.015022
Luo Weixi, Cong Peitian, Sun Tieping, et al. Influence of electrode materials on static performance of gas spark switch[J]. High Power Laser and Particle Beams, 2016, 28: 015022 doi: 10.11884/HPLPB201628.015022
|
| [14] |
戴宏宇, 沈昊, 李黎. 石墨电极气体开关中等离子体弧区碳氧反应效率研究[J]. 强激光与粒子束, 2021, 33:065015 doi: 10.11884/HPLPB202133.210084
Dai Hongyu, Shen Hao, Li Li. Research on plasma arc oxidation efficiency of spark gap switch with graphite electrodes[J]. High Power Laser and Particle Beams, 2021, 33: 065015 doi: 10.11884/HPLPB202133.210084
|
| [15] |
Zeng Fanzheng, Li Song, Zhang Quancai, et al. Investigation on a self-breakdown repetitive gap switch based on the graphite electrodes with TiC surface modification[J]. IEEE Transactions on Plasma Science, 2022, 50(3): 709-714. doi: 10.1109/TPS.2022.3148320
|
| [16] |
Wang Gang, Su Jiancang, Zhang Xibo, et al. Impulse-breakdown characteristics of a high-power gas switch based on graphene cathode[J]. IEEE Transactions on Plasma Science, 2019, 47(10): 4567-4571. doi: 10.1109/TPS.2019.2919350
|
| [17] |
孙钧. 介质掺杂爆炸发射阴极研究[D]. 北京: 清华大学, 2006
Sun Jun. Study on dielectric doped explosion emission cathode[D]. Beijing: Tsinghua University, 2006
|
| [18] |
孙钧, 刘国治, 林郁正, 等. 阴极金属微凸起电场增强因子数值模拟[J]. 强激光与粒子束, 2005, 17(8):1183-1186
Sun Jun, Liu Guozhi, Lin Yuzheng, et al. Numerical simulation of electric field enhancement factor of metallic microprotrusion[J]. High Power Laser and Particle Beams, 2005, 17(8): 1183-1186
|
| [19] |
吴平. 结构场增强爆炸发射阴极研究[D]. 北京: 清华大学, 2017
Wu Ping. Research on explosive emission cathode with structural field enhancement[D]. Beijing: Tsinghua University, 2017
|
| [20] |
Wu Ping, Sun Jun. Emission current from a single micropoint of explosive emission cathode[J]. Physics of Plasmas, 2016, 23: 013111. doi: 10.1063/1.4940334
|
| [21] |
吴德海. 球墨铸铁[M]. 北京: 中国水利水电出版社, 2006
Wu Dehai. Spherical graphite cast iron[M]. Beijing: China Water Power Press, 2006
|
| [22] |
Meek J M. A theory of spark discharge[J]. Physical Review, 1940, 57(8): 722-728. doi: 10.1103/PhysRev.57.722
|
| [23] |
Raether H. Electron avalanches and breakdown in gases[M]. London: Butterworths, 1964.
|
| [24] |
Loeb L B. Fundamental processes of electrical discharge in gases[M]. New York: Wiley, 1939.
|
| [25] |
Li Yutai, Fu Yangyang, Liu Zhigang, et al. Observation of electron runaway in a tip-plane air gap under negative nanosecond pulse voltage by PIC/MCC simulation[J]. Plasma Sources Science and Technology, 2022, 31: 045027. doi: 10.1088/1361-6595/ac5ec9
|
| [26] |
Kunhardt E E, Tzeng Y. Development of an electron avalanche and its transition into streamers[J]. Physical Review A, 1988, 38(3): 1410-1421. doi: 10.1103/PhysRevA.38.1410
|
| [27] |
Tan Nongchao, Wu Ping, Hua Ye, et al. Mechanism analysis of field electron emission of titanium[J]. Physica Scripta, 2023, 98: 045005. doi: 10.1088/1402-4896/acbe78
|
| [28] |
Tan Nongchao, Wu Ping, Sun Jun, et al. Experimental study on the influence of grain boundary on breakdown in relativistic backward wave oscillator[J]. Physica Scripta, 2023, 98: 105535. doi: 10.1088/1402-4896/acfac7
|
| [29] |
Wu Yue, Su Jiancang, Qiu Xudong, et al. Review of metallic microprotrusion model and microdielectrics model in vacuum[J]. IEEE Transactions on Plasma Science, 2023, 51(12): 3492-3499. doi: 10.1109/TPS.2023.3331849
|