Volume 36 Issue 9
Aug.  2024
Turn off MathJax
Article Contents
Qin Yurui, Zhu Balin, Wang Zhonghai, et al. Coded-aperture image reconstruction algorithm based on maximum a posteriori estimation[J]. High Power Laser and Particle Beams, 2024, 36: 096004. doi: 10.11884/HPLPB202436.240152
Citation: Qin Yurui, Zhu Balin, Wang Zhonghai, et al. Coded-aperture image reconstruction algorithm based on maximum a posteriori estimation[J]. High Power Laser and Particle Beams, 2024, 36: 096004. doi: 10.11884/HPLPB202436.240152

Coded-aperture image reconstruction algorithm based on maximum a posteriori estimation

doi: 10.11884/HPLPB202436.240152
  • Received Date: 2024-05-08
  • Accepted Date: 2024-08-13
  • Rev Recd Date: 2024-08-09
  • Available Online: 2024-07-09
  • Publish Date: 2024-08-16
  • Image reconstruction algorithms significantly influence the imaging performance of coded-aperture gamma cameras. However, the widely used Maximum Likelihood Expectation Maximization (MLEM) algorithm falls short in effectively suppressing noise amidst stronger background interference because it relies on the system response matrix under ideal conditions. This paper presents corresponding research and improvements regarding the “pathological” nature of the MLEM algorithm. Firstly, the maximum a posteriori (MAP) algorithm was applied to the image reconstruction of coded aperture imaging, followed by an analysis of the selection methods for key parameters such as the neighborhood size and weight coefficient within the Gibbs prior function of the algorithm. Then, we conducted imaging experiments using the prototype of the coded-aperture gamma camera and compared the image reconstruction results of the MLEM algorithm and the MAP algorithm for the 22Na point source. In the range of 300 to 1200 iterations, the MLEM reconstructed images exhibited noticeable noise spots, with image quality progressively deteriorating as the iterations deepened. In contrast, the MAP reconstructed images did not present any significant noise spots. The average gradient of the reconstructed images was reduced by 26.45% to 49.16% compared to MLEM, and the contrast-to-noise ratio (CNR) was improved by 42.32% to 351.07%. Furthermore, we compared the reconstruction results of multi-point source images with 3 × 3 and 5 × 5 neighborhood sizes. The results indicate that smaller neighborhood size leads to a decrease in the brightness of the hotspots in the reconstructed images, consistent with the theoretical analysis. Finally, we compared the imaging results of the MLEM and MAP algorithms in two separate scenarios: one with greater distance and the other with stronger interference. In both scenarios, the MAP algorithm demonstrated better signal-to-noise ratio (SNR) performance.
  • loading
  • [1]
    昂文胜, 董顺成, 杜永欢, 等. 编码孔径辐射成像定位技术[J]. 辐射研究与辐射工艺学报, 2024, 42: 020801

    Ang Wensheng, Dong Shuncheng, Du Yonghuan, et al. Positioning technique of coded aperture radiation imaging[J]. Journal of Radiation Research and Radiation Processing, 2019, 42: 020801
    [2]
    江少恩, 刘忠礼, 郑志坚. 惯性约束聚变实验中编码成像的反投影解码[J]. 强激光与粒子束, 1999, 11(2):210-214

    Jiang Shaoen, Liu Zhongli, Zheng Zhijian. Decoding using back-project algorithm from coded Image in ICF[J]. High Power Laser and Particle Beams, 1999, 11(2): 210-214
    [3]
    王蒙蒙. 编码孔径成像技术[J]. 中国新技术新产品, 2011(4):59 doi: 10.3969/j.issn.1673-9957.2011.04.058

    Wang Mengmeng. Coded aperture imaging technology[J]. China New Technology and New Products Magazine, 2011(4): 59 doi: 10.3969/j.issn.1673-9957.2011.04.058
    [4]
    Carrel F, Khalil R A, Colas S, et al. GAMPIX: A new gamma imaging system for radiological safety and Homeland Security Purposes[C]//2011 IEEE Nuclear Science Symposium Conference Record. 2011: 4739-4744.
    [5]
    Liu Bin, Lv Huanwen, Xu Hu, et al. A novel coded aperture for γ-ray imaging based on compressed sensing[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1021: 165959. doi: 10.1016/j.nima.2021.165959
    [6]
    Jeong M, Hammig M D. Comparison of gamma ray localization using system matrixes obtained by either MCNP simulations or ray-driven calculations for a coded-aperture imaging system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 954: 161353. doi: 10.1016/j.nima.2018.10.031
    [7]
    张锐. 基于人工神经网络的编码孔γ相机成像方法研究[D]. 南京: 南京航空航天大学, 2020

    Zhang Rui. Research on coded aperture gamma camera imaging method based on artificial neural network[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020
    [8]
    张斌, 王英, 艾宪芸, 等. 基于约束的MLEM图像重建算法[C]//北京核学会第十届(2014年)核应用技术学术交流会论文集. 2014

    Zhang Bin, Wang Ying, Ai Xianyun, et al. Constraint-based MLEM image reconstruction algorithm[C]//Beijing Nuclear Society 10th (2014) Nuclear Application Technology Symposium. 2014
    [9]
    李汉平, 王锋, 艾宪芸. 编码板成像系统MLEM算法优化[J]. 核技术, 2017, 40:020404 doi: 10.11889/j.0253-3219.2017.hjs.40.020404

    Li Hanping, Wang Feng, Ai Xianyun. Algorithm optimization of MLEM in coded aperture imaging system[J]. Nuclear Techniques, 2017, 40: 020404 doi: 10.11889/j.0253-3219.2017.hjs.40.020404
    [10]
    侯英伟, 宋玉收, 孙世杰, 等. 编码成像MLEM互补算法的参数优化[J]. 哈尔滨工程大学学报, 2021, 42(12):1799-1804 doi: 10.11990/jheu.202107069

    Hou Yingwei, Song Yushou, Sun Shijie, et al. Parameter optimization of coded aperture imaging based on the MLEM complementary algorithm[J]. Journal of Harbin Engineering University, 2021, 42(12): 1799-1804 doi: 10.11990/jheu.202107069
    [11]
    Lee T, Lee W. High performance γ-ray imager using dual anti-mask method for the investigation of high-energy nuclear materials[J]. Nuclear Engineering and Technology, 2021, 53(7): 2371-2376. doi: 10.1016/j.net.2021.01.027
    [12]
    刘祎, 桂志国, 张权, 等. 一种基于指数型先验分布的正电子发射断层图像重建算法[J]. 中国组织工程研究与临床康复, 2010, 14(52):9760-9763

    Liu Yi, Gui Zhiguo, Zhang Quan, et al. Positron emission tomography image reconstruction algorithm based on an exponential Markov random field prior model[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(52): 9760-9763
    [13]
    管永红, 王鹏来, 景越峰. 基于贝叶斯准则的闪光照相图像重建[J]. 强激光与粒子束, 2011, 23(9):2495-2498 doi: 10.3788/HPLPB20112309.2495

    Guan Yonghong, Wang Penglai, Jing Yuefeng. Reconstruction of flash radiographic image based on Bayesian approach[J]. High Power Laser and Particle Beams, 2011, 23(9): 2495-2498 doi: 10.3788/HPLPB20112309.2495
    [14]
    Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(1): 1-22. doi: 10.1111/j.2517-6161.1977.tb01600.x
    [15]
    Shepp L A, Vardi Y. Maximum likelihood reconstruction for emission tomography[J]. IEEE Transactions on Medical Imaging, 1982, 1(2): 113-122. doi: 10.1109/TMI.1982.4307558
    [16]
    Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography[J]. Journal of Computer Assisted Tomography, 1984, 8(2): 306-316.
    [17]
    陈伯显, 张智. 核辐射物理及探测学[M]. 哈尔滨: 哈尔滨工程大学出版社, 2011

    Chen Boxian, Zhang Zhi. Nuclear radiation physics and detection[M]. Harbin: Harbin Engineering University Press, 2011
    [18]
    何骞. 基于最大后验概率的PET图像重建算法研究[D]. 长沙: 湖南大学, 2016

    He Qian. The research of PET image reconstruction algorithm based on maximum a posterior[D]. Changsha: Hunan University, 2016
    [19]
    Levitan E, Herman G T. A maximum a posteriori probability expectation maximization algorithm for image reconstruction in emission tomography[J]. IEEE Transactions on Medical Imaging, 1987, 6(3): 185-192. doi: 10.1109/TMI.1987.4307826
    [20]
    苏明. 基于MRF先验模型的图像超分辨率重建算法研究[D]. 合肥: 中国科学技术大学, 2011

    Su Ming. Research for super-resolution image reconstruction algorithm based on MRF prior model[D]. Hefei: University of Science and Technology of China, 2011
    [21]
    Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2): 257-286. doi: 10.1109/5.18626
    [22]
    Besag J. Spatial interaction and the statistical analysis of lattice systems[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1974, 36(2): 192-225. doi: 10.1111/j.2517-6161.1974.tb00999.x
    [23]
    Tsallis C. Possible generalization of Boltzmann-Gibbs statistics[J]. Journal of Statistical Physics, 1988, 52(1/2): 479-487.
    [24]
    Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, PAMI-6(6): 721-741. doi: 10.1109/TPAMI.1984.4767596
    [25]
    Besag J. Towards Bayesian image analysis[J]. Journal of Applied Statistics, 1993, 20(5/6): 107-119.
    [26]
    Mumcuoglu E Ü, Leahy R M, Cherry S R. Bayesian reconstruction of PET images: methodology and performance analysis[J]. Physics in Medicine & Biology, 1996, 41(9): 1777-1807.
    [27]
    Green P J. On use of the EM algorithm for penalized likelihood estimation[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1990, 52(3): 443-452. doi: 10.1111/j.2517-6161.1990.tb01798.x
    [28]
    Gottesman S R, Fenimore E E. New family of binary arrays for coded aperture imaging[J]. Applied Optics, 1989, 28(20): 4344-4352. doi: 10.1364/AO.28.004344
    [29]
    Agostinelli S, Allison J, Amako K, et al. GEANT4—a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3): 250-303.
    [30]
    Allison J, Amako K, Apostolakis J, et al. Geant4 developments and applications[J]. IEEE Transactions on Nuclear Science, 2006, 53(1): 270-278. doi: 10.1109/TNS.2006.869826
    [31]
    龚胡, 石强. 基于平均梯度的边缘保持指数的图像质量评价[C]//2011年信息技术、服务科学与工程管理国际学术会议论文集. 2011

    Gong Hu, Shi Qiang. Image quality assessment based on the mean gradient of edge preserve index[C]//Proceedings of the 2011 International Conference on Information, Services and Management Engineering. 2011
    [32]
    吴鹃. 基于自适应调节下信息特征惩罚的图像修复算法[J]. 国外电子测量技术, 2019, 38(6):33-37

    Wu Juan. Study on image inpainting based on information feature penalty with adaptive adjustment[J]. Foreign Electronic Measurement Technology, 2019, 38(6): 33-37
    [33]
    Zhu Balin, Wang Zhonghai, Gao Tai, et al. A new contrast-to-noise ratio for image quality characterization of a coded-aperture γ camera[J]. Applied Radiation and Isotopes, 2021, 170: 109592. doi: 10.1016/j.apradiso.2021.109592
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article views (676) PDF downloads(66) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return