Volume 36 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
Jiang Hongyu, Jiang Xiaofeng, Wang Zhiguo, et al. Discharge characteristics of trigger brick gas switches for 12-stage linear transformer driver[J]. High Power Laser and Particle Beams, 2024, 36: 115017. doi: 10.11884/HPLPB202436.240206
Citation: Jiang Hongyu, Jiang Xiaofeng, Wang Zhiguo, et al. Discharge characteristics of trigger brick gas switches for 12-stage linear transformer driver[J]. High Power Laser and Particle Beams, 2024, 36: 115017. doi: 10.11884/HPLPB202436.240206

Discharge characteristics of trigger brick gas switches for 12-stage linear transformer driver

doi: 10.11884/HPLPB202436.240206
  • Received Date: 2024-06-21
  • Accepted Date: 2024-08-26
  • Rev Recd Date: 2024-08-26
  • Available Online: 2024-08-31
  • Publish Date: 2024-11-01
  • The 12-stage linear transformer driver (LTD) adopts the novel method of internal in situ triggering in sequence, and puts forward the technical requirements of low pre-fire probability, low trigger threshold voltage, low jitter and adjustable trigger delay time for the trigger brick gas switches. This paper introduces the structure and working principle of the trigger brick gas switch based on resistance voltage balance and corona assisted triggering technology. The test platform of gas switch characteristics is established, and after the process of conditioning, the breakdown characteristics of 12 gas switches are tested. Then, the switches are applied to the 12-stage LTD to carry out cascade triggering experiments, and the triggering characteristic parameters under different charging voltages and working coefficients are obtained. The experimental results show that, when the charging voltage of the switch is ±60−±80 kV and the working coefficient is 60%−80%, the jitter is lower than 2 ns, and there is no pre-fire in more than 500 shots. The trigger brick gas switches of the 12-stage LTD can be sequentially closed according to the ideal sequence, and the trigger sequence coefficient can be adjusted in the range of 0.83−1.17.
  • loading
  • [1]
    McBride R D, Stygar W A, Cuneo M E, et al. A primer on pulsed power and linear transformer drivers for high energy density physics applications[J]. IEEE Transactions on Plasma Science, 2018, 46(11): 3928-3967. doi: 10.1109/TPS.2018.2870099
    [2]
    Kim A A, Mazarakis M G. The story of the LTD development[J]. IEEE Transactions on Plasma Science, 2020, 48(4): 749-756. doi: 10.1109/TPS.2019.2954210
    [3]
    Mazarakis M G, Fowler W E, LeChien K L, et al. High-current linear transformer driver development at Sandia National Laboratories[J]. IEEE Transactions on Plasma Science, 2010, 38(4): 704-713. doi: 10.1109/TPS.2009.2035318
    [4]
    陈林, 王勐, 邹文康, 等. 中物院快脉冲直线型变压器驱动源技术研究进展[J]. 高电压技术, 2015, 41(6):1798-1806

    Chen Lin, Wang Meng, Zou Wenkang, et al. Recent advances in fast linear transformer driver in CAEP[J]. High Voltage Engineering, 2015, 41(6): 1798-1806
    [5]
    Sinars D B, Sweeney M A, Alexander C S, et al. Review of pulsed power-driven high energy density physics research on Z at Sandia[J]. Physics of Plasmas, 2020, 27: 070501. doi: 10.1063/5.0007476
    [6]
    Jiang Hongyu, Jiang Xiaofeng, Wang Zhiguo, et al. 5.8-GW discharge brick for linear transformer driver[J]. IEEE Transactions on Plasma Science, 2022, 50(11): 4718-4723. doi: 10.1109/TPS.2022.3214374
    [7]
    降宏瑜, 姜晓峰, 王志国, 等. LTD多间隙气体开关电场优化及自放率实验研究[J]. 现代应用物理, 2022, 13:040410 doi: 10.12061/j.issn.2095-6223.2022.040410

    Jiang Hongyu, Jiang Xiaofeng, Wang Zhiguo, et al. Electric field optimization and pre-fire rate of LTD multi-gap gas switch[J]. Modern Applied Physics, 2022, 13: 040410 doi: 10.12061/j.issn.2095-6223.2022.040410
    [8]
    Woodworth J R, Fowler W E, Stoltzfus B S, et al. Compact 810 kA linear transformer driver cavity[J]. Physical Review Special Topics-Accelerators and Beams, 2011, 14: 040401. doi: 10.1103/PhysRevSTAB.14.040401
    [9]
    Douglass J D, Hutsel B T, Leckbee J J, et al. 100 GW linear transformer driver cavity: design, simulations, and performance[J]. Physical Review Accelerators and Beams, 2018, 21: 120401. doi: 10.1103/PhysRevAccelBeams.21.120401
    [10]
    Jiang Xiaofeng, Sun Fengju, Wang Zhiguo, et al. A gas-insulated mega-ampere-class linear transformer driver with pluggable bricks[J]. Review of Scientific Instruments, 2020, 91: 123303. doi: 10.1063/5.0028451
    [11]
    Chen Lin, Zou Wenkang, Zhou Liangji, et al. Development of a fusion-oriented pulsed power module[J]. Physical Review Accelerators and Beams, 2019, 22: 030401. doi: 10.1103/PhysRevAccelBeams.22.030401
    [12]
    Chen Lin, Zou Wenkang, Jiang Jihao, et al. First results from a 760-GW linear transformer driver module for Z-pinch research[J]. Matter and Radiation at Extremes, 2021, 6: 045901. doi: 10.1063/5.0003346
    [13]
    孙凤举, 邱爱慈, 姜晓峰, 等. 基于共用腔体与内置触发的12级串联太瓦级LTD脉冲源[J]. 现代应用物理, 2022, 13:040404 doi: 10.12061/j.issn.2095-6223.2022.040404

    Sun Fengju, Qiu Aici, Jiang Xiaofeng, et al. Twelve-stage linear transformer driver with one terra-watts power on a sharing common cavity shell and internal in-situ triggering method[J]. Modern Applied Physics, 2022, 13: 040404 doi: 10.12061/j.issn.2095-6223.2022.040404
    [14]
    Stygar W A, Awe T J, Bailey J E, et al. Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments[J]. Physical Review Accelerators and Beams, 2015, 18: 110401. doi: 10.1103/PhysRevSTAB.18.110401
    [15]
    Zhou Lin, Li Zhenghong, Wang Zhen, et al. Design of a 5-MA 100-ns linear-transformer-driver accelerator for wire array Z-pinch experiments[J]. Physical Review Accelerators and Beams, 2016, 19: 030401. doi: 10.1103/PhysRevAccelBeams.19.030401
    [16]
    孙凤举, 邱爱慈, 魏浩, 等. 快Z箍缩百太瓦级脉冲驱动源概念设计的发展[J]. 现代应用物理, 2017, 8:020702

    Sun Fengju, Qiu Aici, Wei Hao, et al. Development of conceptual design on fast Z-pinch pulsed power driver with hundreds of terawatt[J]. Modern Applied Physics, 2017, 8: 020702
    [17]
    王志国, 孙凤举, 姜晓峰, 等. FLTD大规模气体开关同步触发技术研究[J]. 现代应用物理, 2022, 13:040407

    Wang Zhiguo, Sun Fengju, Jiang Xiaofeng, et al. Synchronous trigger technology for large-scale gas switches of FLTD[J]. Modern Applied Physics, 2022, 13: 040407
    [18]
    Jiang Hongyu, Sun Fengju, Cong Peitian, et al. Optimization of self-breakdown and triggering characteristics on multigap gas switch by mounting resistors and capacitors in parallel with switch gaps[J]. IEEE Transactions on Plasma Science, 2019, 47(6): 2922-2928. doi: 10.1109/TPS.2019.2911563
    [19]
    Jiang Xiaofeng, Jiang Hongyu, Wang Zhiguo, et al. A compact low-trigger-threshold multigap gas switch[J]. Review of Scientific Instruments, 2019, 90: 106101. doi: 10.1063/1.5113704
    [20]
    Jiang Hongyu, Jiang Xiaofeng, Wang Zhiguo, et al. Study on discharge characteristics of six-gap gas switch with corona assisted triggering[J]. Review of Scientific Instruments, 2023, 94: 054704. doi: 10.1063/5.0133944
    [21]
    曾正中. 实用脉冲功率技术引论[M]. 西安: 陕西科学技术出版社, 2003

    Zeng Zhengzhong. Introduction to practical pulse power technology[M]. Xi’an: Shaanxi Science and Technology Press, 2003
    [22]
    刘鹏. 开关闭合时序及分散性对多级感应腔串联FLTD性能影响的研究[D]. 西安: 西安交通大学, 2012

    Liu Peng. Effect of closing sequences of switches and their jitter on the operating performance of multi-cavity-stacked fast linear transformer driver[D]. Xi’an: Xi’an Jiantong University, 2012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views (670) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return