Volume 36 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
Zhu Zhangjie, Yang Yingxiang, Hu Long, et al. Bipolar ultra-wide spectrum pulse generator based on GaAs photoconductive switches[J]. High Power Laser and Particle Beams, 2024, 36: 115007. doi: 10.11884/HPLPB202436.240238
Citation: Zhu Zhangjie, Yang Yingxiang, Hu Long, et al. Bipolar ultra-wide spectrum pulse generator based on GaAs photoconductive switches[J]. High Power Laser and Particle Beams, 2024, 36: 115007. doi: 10.11884/HPLPB202436.240238

Bipolar ultra-wide spectrum pulse generator based on GaAs photoconductive switches

doi: 10.11884/HPLPB202436.240238
  • Received Date: 2024-07-20
  • Accepted Date: 2024-10-22
  • Rev Recd Date: 2024-10-22
  • Available Online: 2024-10-26
  • Publish Date: 2024-11-15
  • In this paper, a bipolar solid-state pulsed power source based on gallium arsenide (GaAs) photoconductive semiconductor switch (PCSS) is designed. By studying the reflection coefficients at the structural end of the two-stage pulse forming line (PFL), the wave processes of single-stage positive and negative pulses as well as bipolar pulses are analysed, and the circuit simulation is carried out by using the PSpice tool. The effect of resistive impedance at the input end on pulse trailing is investigated, and the methods of pulse trailing modulation and pulse width modulation are proposed. Based on the vertically structured GaAs PCSS and the two-stage pulse-forming line structure, a resistor-isolated pulse charging experimental platform is constructed, and the optical path time-triggering technique is adopted to regulate the on-time sequence of the photoconductive switch. The experimental results show that the developed bipolar solid-state pulsed power source generator can produce bipolar nanosecond impulse with peak-to-peak values up to 3.26 kV, pulse widths of 5.6 ns, and a repetition frequency of 1 kHz under a bias voltage of 2.5 kV, which verifies the feasibility of generating bipolar nanosecond impulse by combining an avalanche GaAs PCSS with a multilevel wave topology PFL.
  • loading
  • [1]
    Korovin S D, Rostov V V, Polevin S D, et al. Pulsed power-driven high-power microwave sources[J]. Proceedings of the IEEE, 2004, 92(7): 1082-1095. doi: 10.1109/JPROC.2004.829020
    [2]
    Liu Kexin, Zhang Xiangyu, Qi Lei, et al. A novel solid-state switch scheme with high voltage utilization efficiency by using modular gapped MOV for DC breakers[J]. IEEE Transactions on Power Electronics, 2022, 37(3): 2502-2507. doi: 10.1109/TPEL.2021.3115254
    [3]
    袁建强, 刘宏伟, 马勋, 等. 基于光导开关的固态脉冲功率源及其应用[J]. 高电压技术, 2015, 41(6):1807-1817

    Yuan Jianqiang, Liu Hongwei, Ma Xun, et al. Development and application of solid state pulsed power generators based on photoconductive semiconductor switches[J]. High Voltage Engineering, 2015, 41(6): 1807-1817
    [4]
    Yang Yingxiang, Hu Long, Yang Xianghong, et al. Reducing dark-state current for GaAs photoconductive semiconductor switch by ultrafine grinding process[J]. IEEE Transactions on Electron Devices, 2024, 71(6): 3565-3569. doi: 10.1109/TED.2024.3384135
    [5]
    牛昕玥, 谷炎然, 楚旭, 等. 光导微波源阵列合成时控技术初步研究[J]. 强激光与粒子束, 2024, 36:013005 doi: 10.11884/HPLPB202436.230260

    Niu Xinyue, Gu Yanran, Chu Xu, et al. Primary study on time control technology of active phased array based on photoconductive microwave source[J]. High Power Laser and Particle Beams, 2024, 36: 013005 doi: 10.11884/HPLPB202436.230260
    [6]
    Vergne B, Couderc V, Leveque P. A 30-kHz monocycle generator using linear photoconductive switches and a microchip laser[J]. IEEE Photonics Technology Letters, 2008, 20(24): 2132-2134. doi: 10.1109/LPT.2008.2007132
    [7]
    Zucker O S F. High-power microwave generation with photoconductors[J]. Journal of Lightwave Technology, 2008, 26(15): 2430-2440. doi: 10.1109/JLT.2008.925611
    [8]
    Zucker O S F. Circuits for digitally synthesizing very long HPM pulses in compact geometry[C]//Proceedings of 2011 IEEE Pulsed Power Conference. 2011: 706-710.
    [9]
    彭媛媛, 陈文光, 卢杨, 等. 基于Boost闭环控制的恒峰值双极性脉冲发生器的研制[J]. 强激光与粒子束, 2022, 34:115003 doi: 10.11884/HPLPB202234.220179

    Peng Yuanyuan, Chen Wenguang, Lu Yang, et al. Development of constant peak bipolar pulse generator based on Boost closed-loop control[J]. High Power Laser and Particle Beams, 2022, 34: 115003 doi: 10.11884/HPLPB202234.220179
    [10]
    Malviya D, Veerachary M. A boost converter-based high-voltage pulsed-power supply[J]. IEEE Transactions on Industry Applications, 2020, 56(5): 5222-5233. doi: 10.1109/TIA.2020.3007396
    [11]
    Elgenedy M A, Massoud A M, Ahmed S, et al. A modular multilevel voltage-boosting Marx pulse-waveform generator for electroporation applications[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 10575-10589. doi: 10.1109/TPEL.2019.2899974
    [12]
    Kazemi M R, Sugai T, Tokuchi A, et al. Waveform control of pulsed-power generator based on solid-state LTD[J]. IEEE Transactions on Plasma Science, 2017, 45(2): 247-251. doi: 10.1109/TPS.2016.2640315
    [13]
    Wang Meng, Novac B M, Pécastaing L, et al. Bipolar modulation of the output of a 10-GW pulsed power generator[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 1971-1977. doi: 10.1109/TPS.2016.2569461
    [14]
    Efremov A M, Koshelev V I, Kovalchuk B M, et al. High-power sources of ultra-wideband radiation with subnanosecond pulse lengths[J]. Instruments and Experimental Techniques, 2011, 54(1): 70-76. doi: 10.1134/S0020441211010052
    [15]
    Lee S H, Song S H, Ryoo H J. Current-loop gate-driving circuit for solid-state Marx modulator with fast-rising nanosecond pulses[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 8953-8961. doi: 10.1109/TPEL.2021.3051041
    [16]
    张现福, 丁恩燕, 陆巍, 等. 高功率超宽带双极脉冲产生技术[J]. 强激光与粒子束, 2010, 22(3):489-493 doi: 10.3788/HPLPB20102203.0489

    Zhang Xianfu, Ding Enyan, Lu Wei, et al. High power ultra-wideband bipolar pulse formers[J]. High Power Laser and Particle Beams, 2010, 22(3): 489-493 doi: 10.3788/HPLPB20102203.0489
    [17]
    Ma Jiuxin, Yu Liang, Ren Lvheng, et al. Nanosecond pulse generator based on inductive energy storage forming line with impedance matching modulation capability[J]. IEEE Transactions on Industrial Electronics, 2024, 71(12): 15643-15653. doi: 10.1109/TIE.2024.3387043
    [18]
    Schoenberg J S H, Burger J W, Tyo J S, et al. Ultra-wideband source using gallium arsenide photoconductive semiconductor switches[J]. IEEE Transactions on Plasma Science, 1997, 25(2): 327-334. doi: 10.1109/27.602507
    [19]
    Xu Ming, Dong Hangtian, Liu Chun, et al. Investigation of an opposed-contact GaAs photoconductive semiconductor switch at 1-kHz excitation[J]. IEEE Transactions on Electron Devices, 2021, 68(5): 2355-2359. doi: 10.1109/TED.2021.3066094
    [20]
    樊亚军. 高功率亚纳秒电磁脉冲产生[D]. 西安: 西安交通大学, 2004: 43-47

    Fan Yajun. High power sub-nanosecond electromagnetic pulse generation[D]. Xi'an: Xi'an Jiaotong University, 2004: 43-47
    [21]
    Hu Long, Su Jiancang, Qiu Ruicheng, et al. Ultra-wideband microwave generation using a low-energy-triggered bulk gallium arsenide avalanche semiconductor switch with ultrafast switching[J]. IEEE Transactions on Electron Devices, 2018, 65(4): 1308-1313. doi: 10.1109/TED.2018.2802642
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)

    Article views (443) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return