| Citation: | Yu Juan, Ni Li, Peng Kun, et al. The 1.5th-generation “three-high/one-excellent” YDF specialty laser fiber[J]. High Power Laser and Particle Beams, 2024, 36: 101001. doi: 10.11884/HPLPB202436.240268 |
For the development of high-end fiber lasers and breaking through the technical bottlenecks limiting the output power and performance improvement of fiber laser systems, the Joint-Innovation Center of High Power Fiber Laser Technology, Institute of Chemical Materials (ICM) of China Academy of Engineering Physics (CAEP) , adopted the mode-tailoring fabrication process technology, theoretically designed and firstly fabricated the 1.5th-generation (1.5G) YDF specialty laser fibers, which are particularly suitable for 976 nm-LD end-pumping method (976-technology route) to effectively improve the threshold of mode instability (TMI) and significantly optimize the beam quality of laser output. Compared with currently widely-used 1.0G Yb-APS fiber, 1.5G YDF specialty laser fiber shows about 20% improvement both in laser output power and beam quality. The 1.5G YDF specialty laser fibers fully demonstrate technical characteristics of “three-high/one-excellent”—high power, high efficiency, high TMI threshold, and M2 optimization—which can be selected by high-end customers in the industrial market and/or applied in high power laser fields.
| [1] |
Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224. doi: 10.1364/OE.19.013218
|
| [2] |
Otto H J, Stutzki F, Jansen F, et al. Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers[J]. Optics Express, 2012, 20(14): 15710-15722. doi: 10.1364/OE.20.015710
|
| [3] |
Stutzki F, Otto H J, Jansen F, et al. High-speed modal decomposition of mode instabilities in high-power fiber lasers[J]. Optics Letters, 2011, 36(23): 4572-4574. doi: 10.1364/OL.36.004572
|
| [4] |
Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Study of mode instabilities in high power fiber amplifiers by detecting scattering light[C]//Proceedings of Fiber-Based Technologies and Applications. 2014: FTh2F. 2.
|
| [5] |
陶汝茂, 周朴, 肖虎, 等. 高功率光纤激光中模式不稳定性现象研究进展[J]. 激光与光电子学进展, 2014, 51:020001
Tao Rumao, Zhou Pu, Xiao Hu, et al. Progress of study on mode instability in high power fiber amplifiers[J]. Laser & Optoelectronics Progress, 2014, 51: 020001
|
| [6] |
史尘, 陶汝茂, 王小林, 等. 光纤激光模式不稳定的新现象与新进展[J]. 中国激光, 2017, 44:0201004 doi: 10.3788/CJL201744.0201004
Shi Chen, Tao Rumao, Wang Xiaolin, et al. New progress and phenomena of modal instability in fiber lasers[J]. Chinese Journal of Lasers, 2017, 44: 0201004 doi: 10.3788/CJL201744.0201004
|
| [7] |
Brar K, Savage-Leuchs M, Henrie J, et al. Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers[C]//Proceedings of SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications. 2014: 89611R.
|
| [8] |
Otto H J, Modsching N, Jauregui C, et al. Wavelength dependence of maximal diffraction-limited output power of fiber lasers[C]//Proceedings of Advanced Solid State Lasers 2014. 2014: AM5A. 44.
|
| [9] |
Hejaz K, Norouzey A, Poozesh R, et al. Controlling mode instability in a 500 W ytterbium-doped fiber laser[J]. Laser Physics, 2014, 24: 025102. doi: 10.1088/1054-660X/24/2/025102
|
| [10] |
曾令筏, 文榆钧, 王小林, 等. 高功率光纤激光器反常模式不稳定效应实验研究[J]. 中国激光, 2024, 51:0601001 doi: 10.3788/CJL230782
Zeng Lingfa, Wen Yujun, Wang Xiaolin, et al. Experimental research on abnormal transverse mode instability in high-power fiber lasers[J]. Chinese Journal of Lasers, 2024, 51: 0601001 doi: 10.3788/CJL230782
|
| [11] |
陈益沙, 廖雷, 李进延. 光纤激光器模式不稳定机理及抑制方法研究进展[J]. 激光与光电子学进展, 2017, 54:080001
Chen Yisha, Liao Lei, Li Jinyan. Research progress on mode instability mechanism and suppression methods for fiber lasers[J]. Laser & Optoelectronics Progress, 2017, 54: 080001
|
| [12] |
林傲祥, 彭昆, 俞娟, 等. 高功率连续光纤激光系统热效应及其抑制措施[J]. 强激光与粒子束, 2022, 34:011005 doi: 10.11884/HPLPB202234.210336
Lin Aoxiang, Peng Kun, Yu Juan, et al. Thermal effect and its suppression in high-power continuous-wave fiber laser system[J]. High Power Laser and Particle Beams, 2022, 34: 011005 doi: 10.11884/HPLPB202234.210336
|
| [13] |
林傲祥, 肖起榕, 倪力, 等. 国产YDF有源光纤实现单纤20 kW激光输出[J]. 中国激光, 2021, 48:0916003
Lin Aoxiang, Xiao Qirong, Ni Li, et al. Domestic YDF active fiber realizes single fiber 20 kW laser output[J]. Chinese Journal of Lasers, 2021, 48: 0916003
|
| [14] |
林傲祥, 倪力, 彭昆, 等. 国产千瓦级LMA-14/250-YDF有源激光光纤[J]. 中国激光, 2020, 47:1216003 doi: 10.3788/CJL202047.1216003
Lin Aoxiang, Ni Li, Peng Kun, et al. Domestic kilowatt level LMA-14/250-YDF active laser fiber[J]. Chinese Journal of Lasers, 2020, 47: 1216003 doi: 10.3788/CJL202047.1216003
|
| [15] |
林傲祥, 倪力, 彭昆, 等. 国产20/400 μm规格有源光纤实现3 kW激光输出[J]. 中国激光, 2017, 44:0115001 doi: 10.3788/CJL201744.0115001
Lin Aoxiang, Ni Li, Peng Kun, et al. Domestic 20/400 μm specification active fiber achieves 3 kW laser output[J]. Chinese Journal of Lasers, 2017, 44: 0115001 doi: 10.3788/CJL201744.0115001
|