Volume 36 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
Yu Juan, Ni Li, Peng Kun, et al. The 1.5th-generation “three-high/one-excellent” YDF specialty laser fiber[J]. High Power Laser and Particle Beams, 2024, 36: 101001. doi: 10.11884/HPLPB202436.240268
Citation: Yu Juan, Ni Li, Peng Kun, et al. The 1.5th-generation “three-high/one-excellent” YDF specialty laser fiber[J]. High Power Laser and Particle Beams, 2024, 36: 101001. doi: 10.11884/HPLPB202436.240268

The 1.5th-generation “three-high/one-excellent” YDF specialty laser fiber

doi: 10.11884/HPLPB202436.240268
  • Received Date: 2024-08-15
  • Accepted Date: 2024-09-18
  • Rev Recd Date: 2024-09-18
  • Available Online: 2024-09-21
  • Publish Date: 2024-10-15
  • For the development of high-end fiber lasers and breaking through the technical bottlenecks limiting the output power and performance improvement of fiber laser systems, the Joint-Innovation Center of High Power Fiber Laser Technology, Institute of Chemical Materials (ICM) of China Academy of Engineering Physics (CAEP) , adopted the mode-tailoring fabrication process technology, theoretically designed and firstly fabricated the 1.5th-generation (1.5G) YDF specialty laser fibers, which are particularly suitable for 976 nm-LD end-pumping method (976-technology route) to effectively improve the threshold of mode instability (TMI) and significantly optimize the beam quality of laser output. Compared with currently widely-used 1.0G Yb-APS fiber, 1.5G YDF specialty laser fiber shows about 20% improvement both in laser output power and beam quality. The 1.5G YDF specialty laser fibers fully demonstrate technical characteristics of “three-high/one-excellent”—high power, high efficiency, high TMI threshold, and M2 optimization—which can be selected by high-end customers in the industrial market and/or applied in high power laser fields.

  • loading
  • [1]
    Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224. doi: 10.1364/OE.19.013218
    [2]
    Otto H J, Stutzki F, Jansen F, et al. Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers[J]. Optics Express, 2012, 20(14): 15710-15722. doi: 10.1364/OE.20.015710
    [3]
    Stutzki F, Otto H J, Jansen F, et al. High-speed modal decomposition of mode instabilities in high-power fiber lasers[J]. Optics Letters, 2011, 36(23): 4572-4574. doi: 10.1364/OL.36.004572
    [4]
    Tao Rumao, Ma Pengfei, Wang Xiaolin, et al. Study of mode instabilities in high power fiber amplifiers by detecting scattering light[C]//Proceedings of Fiber-Based Technologies and Applications. 2014: FTh2F. 2.
    [5]
    陶汝茂, 周朴, 肖虎, 等. 高功率光纤激光中模式不稳定性现象研究进展[J]. 激光与光电子学进展, 2014, 51:020001

    Tao Rumao, Zhou Pu, Xiao Hu, et al. Progress of study on mode instability in high power fiber amplifiers[J]. Laser & Optoelectronics Progress, 2014, 51: 020001
    [6]
    史尘, 陶汝茂, 王小林, 等. 光纤激光模式不稳定的新现象与新进展[J]. 中国激光, 2017, 44:0201004 doi: 10.3788/CJL201744.0201004

    Shi Chen, Tao Rumao, Wang Xiaolin, et al. New progress and phenomena of modal instability in fiber lasers[J]. Chinese Journal of Lasers, 2017, 44: 0201004 doi: 10.3788/CJL201744.0201004
    [7]
    Brar K, Savage-Leuchs M, Henrie J, et al. Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers[C]//Proceedings of SPIE 8961, Fiber Lasers XI: Technology, Systems, and Applications. 2014: 89611R.
    [8]
    Otto H J, Modsching N, Jauregui C, et al. Wavelength dependence of maximal diffraction-limited output power of fiber lasers[C]//Proceedings of Advanced Solid State Lasers 2014. 2014: AM5A. 44.
    [9]
    Hejaz K, Norouzey A, Poozesh R, et al. Controlling mode instability in a 500 W ytterbium-doped fiber laser[J]. Laser Physics, 2014, 24: 025102. doi: 10.1088/1054-660X/24/2/025102
    [10]
    曾令筏, 文榆钧, 王小林, 等. 高功率光纤激光器反常模式不稳定效应实验研究[J]. 中国激光, 2024, 51:0601001 doi: 10.3788/CJL230782

    Zeng Lingfa, Wen Yujun, Wang Xiaolin, et al. Experimental research on abnormal transverse mode instability in high-power fiber lasers[J]. Chinese Journal of Lasers, 2024, 51: 0601001 doi: 10.3788/CJL230782
    [11]
    陈益沙, 廖雷, 李进延. 光纤激光器模式不稳定机理及抑制方法研究进展[J]. 激光与光电子学进展, 2017, 54:080001

    Chen Yisha, Liao Lei, Li Jinyan. Research progress on mode instability mechanism and suppression methods for fiber lasers[J]. Laser & Optoelectronics Progress, 2017, 54: 080001
    [12]
    林傲祥, 彭昆, 俞娟, 等. 高功率连续光纤激光系统热效应及其抑制措施[J]. 强激光与粒子束, 2022, 34:011005 doi: 10.11884/HPLPB202234.210336

    Lin Aoxiang, Peng Kun, Yu Juan, et al. Thermal effect and its suppression in high-power continuous-wave fiber laser system[J]. High Power Laser and Particle Beams, 2022, 34: 011005 doi: 10.11884/HPLPB202234.210336
    [13]
    林傲祥, 肖起榕, 倪力, 等. 国产YDF有源光纤实现单纤20 kW激光输出[J]. 中国激光, 2021, 48:0916003

    Lin Aoxiang, Xiao Qirong, Ni Li, et al. Domestic YDF active fiber realizes single fiber 20 kW laser output[J]. Chinese Journal of Lasers, 2021, 48: 0916003
    [14]
    林傲祥, 倪力, 彭昆, 等. 国产千瓦级LMA-14/250-YDF有源激光光纤[J]. 中国激光, 2020, 47:1216003 doi: 10.3788/CJL202047.1216003

    Lin Aoxiang, Ni Li, Peng Kun, et al. Domestic kilowatt level LMA-14/250-YDF active laser fiber[J]. Chinese Journal of Lasers, 2020, 47: 1216003 doi: 10.3788/CJL202047.1216003
    [15]
    林傲祥, 倪力, 彭昆, 等. 国产20/400 μm规格有源光纤实现3 kW激光输出[J]. 中国激光, 2017, 44:0115001 doi: 10.3788/CJL201744.0115001

    Lin Aoxiang, Ni Li, Peng Kun, et al. Domestic 20/400 μm specification active fiber achieves 3 kW laser output[J]. Chinese Journal of Lasers, 2017, 44: 0115001 doi: 10.3788/CJL201744.0115001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article views (777) PDF downloads(116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return