Volume 36 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
Ye Jifei, Li Hua, Li Zhenhan, et al. Research on breaking process of 15 kV pyrobreaker[J]. High Power Laser and Particle Beams, 2024, 36: 115020. doi: 10.11884/HPLPB202436.240328
Citation: Ye Jifei, Li Hua, Li Zhenhan, et al. Research on breaking process of 15 kV pyrobreaker[J]. High Power Laser and Particle Beams, 2024, 36: 115020. doi: 10.11884/HPLPB202436.240328

Research on breaking process of 15 kV pyrobreaker

doi: 10.11884/HPLPB202436.240328
  • Received Date: 2024-09-14
  • Accepted Date: 2024-10-20
  • Rev Recd Date: 2024-10-20
  • Available Online: 2024-10-19
  • Publish Date: 2024-11-01
  • The superconducting tokamak device constrains high-temperature plasma through an extremely high magnetic field to achieve a controllable nuclear fusion reaction. To ensure the safe operation of the superconducting magnets, the quench protection system relies on pyrobreaker for critical backup protection. In this paper, the numerical model of current contacts in the 15 kV pyrobreaker has been established and the analysis is carried out for the contact breaking process. The detonation pressure required for contact separation and the pressure distribution law generated by the explosion are calculated. Furthermore, the accuracy of the numerical simulations is verified through experimental validation, providing a theoretical foundation for the design of pyrobreaker.
  • loading
  • [1]
    李华, 宋执权, 汪舒生, 等. 核聚变装置中直流保护开关的研究进展[J]. 中国电机工程学报, 2016, 36(s1):233-239

    Li Hua, Song Zhiquan, Wang Shusheng, et al. Study on DC protection switch for superconducting coils in magnetic confinement fusion device[J]. Proceedings of the CSEE, 2016, 36(s1): 233-239
    [2]
    Wu Mingfu, Liu Zixi, Zhang Tao, et al. Experimental study of double tearing mode on EAST tokamak[J]. Plasma Science and Technology, 2020, 22: 025102. doi: 10.1088/2058-6272/ab4f8a
    [3]
    Yang Wenjun, Li Guoqiang, Gao Xiang, et al. Stability analysis of Alfvén eigenmodes in the Experimental Advanced Superconducting Tokamak[J]. Fusion Science and Technology, 2023, 79(5): 528-536. doi: 10.1080/15361055.2022.2151279
    [4]
    宋执权, 傅鹏, 汤伦军, 等. EAST极向场电源失超保护系统的设计及模拟实验[J]. 核聚变与等离子体物理, 2007, 27(1):28-33 doi: 10.3969/j.issn.0254-6086.2007.01.006

    Song Zhiquan, Fu Peng, Tang Lunjun, et al. Design of the quench protection system of the EAST PFPS and its simulation[J]. Nuclear Fusion and Plasma Physics, 2007, 27(1): 28-33 doi: 10.3969/j.issn.0254-6086.2007.01.006
    [5]
    Tang Cunwen, Song Zhiquan, Li Chuan, et al. Computational investigation on the explosively actuated switch utilized in quenching protection system[J]. Fusion Engineering and Design, 2021, 163: 112157. doi: 10.1016/j.fusengdes.2020.112157
    [6]
    Tang Cunwen, Li Hua, Song Zhiquan, et al. Design and characterisation of the high-current DC breaker driven by explosive[J]. High Voltage, 2023, 8(3): 466-476. doi: 10.1049/hve2.12286
    [7]
    Kamada Y, Barabaschi P, Ishida S, et al. Progress of the JT-60SA project[J]. Nuclear Fusion, 2013, 53: 104010. doi: 10.1088/0029-5515/53/10/104010
    [8]
    Heshmati M, Zamani J, Mozafari A. The experimental and numerical impacts of geometrical parameters of conical shock tube on the function, maximum pressure and generative impulses to expose equivalent mass and behavioral equation[J]. Materialwissenschaft Und Werkstofftechnik, 2016, 47(7): 623-634. doi: 10.1002/mawe.201600510
    [9]
    文彦博, 胡亮亮, 秦健, 等. 近场水下爆炸气泡脉动及水射流的实验与数值模拟研究[J]. 爆炸与冲击, 2022, 42:053203 doi: 10.11883/bzycj-2021-0206

    Wen Yanbo, Hu Liangliang, Qin Jian, et al. Experimental study and numerical simulation on bubble pulsation and water jet in near-field underwater explosion[J]. Explosion and Shock Waves, 2022, 42: 053203 doi: 10.11883/bzycj-2021-0206
    [10]
    余同希, 朱凌, 许骏. 结构冲击动力学进展(2010-2020)[J]. 爆炸与冲击, 2021, 41:121401 doi: 10.11883/bzycj-2021-0113

    Yu Tongxi, Zhu Ling, Xu Jun. Progress in structural impact dynamics during 2010−2020[J]. Explosion and Shock Waves, 2021, 41: 121401 doi: 10.11883/bzycj-2021-0113
    [11]
    Javier C, Galuska M, Papa M, et al. Underwater explosive bubble interaction with an adjacent submerged structure[J]. Journal of Fluids and Structures, 2021, 100: 103189. doi: 10.1016/j.jfluidstructs.2020.103189
    [12]
    翟希梅, 王永辉. 爆炸荷载下网壳结构的动力响应及泄爆措施[J]. 爆炸与冲击, 2012, 32(4):404-410 doi: 10.3969/j.issn.1001-1455.2012.04.010

    Zhai Ximei, Wang Yonghui. Dynamic response and explosion relief of reticulated shell under blast loading[J]. Explosion and Shock Waves, 2012, 32(4): 404-410 doi: 10.3969/j.issn.1001-1455.2012.04.010
    [13]
    Souers P C, Minich R. Cylinder test correction for copper work hardening and spall[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(2): 238-245. doi: 10.1002/prep.201400135
    [14]
    林大超, 白春华, 张奇. 空气中爆炸时爆炸波的超压函数[J]. 爆炸与冲击, 2001, 21(1):41-46 doi: 10.3321/j.issn:1001-1455.2001.01.009

    Lin Dachao, Bai Chunhua, Zhang Qi. Overpressure functions of blast waves for explosions in air[J]. Explosion and Shock Waves, 2001, 21(1): 41-46 doi: 10.3321/j.issn:1001-1455.2001.01.009
    [15]
    张凤国, 周洪强. 晶粒尺度对延性金属材料层裂损伤的影响[J]. 物理学报, 2013, 62:164601 doi: 10.7498/aps.62.164601

    Zhang Fengguo, Zhou Hongqiang. Effects of grain size on the dynamic tensile damage of ductile polycrystalline metall[J]. Acta Physica Sinica, 2013, 62: 164601 doi: 10.7498/aps.62.164601
    [16]
    Escobedo J P, Dennis-Koller D, Cerreta E K, et al. Effects of grain size and boundary structure on the dynamic tensile response of copper[J]. Journal of Applied Physics, 2011, 110: 033513. doi: 10.1063/1.3607294
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article views (488) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return