Chen Jinbao, Xiang Guangbiao, Wang Xiaolin, et al. Experimental study of self-bleaching and radiation equilibrium in output power of fiber lasers at low dose rates[J]. High Power Laser and Particle Beams, 2024, 36: 121001. doi: 10.11884/HPLPB202436.240384
Citation:
Chen Jinbao, Xiang Guangbiao, Wang Xiaolin, et al. Experimental study of self-bleaching and radiation equilibrium in output power of fiber lasers at low dose rates[J]. High Power Laser and Particle Beams, 2024, 36: 121001. doi: 10.11884/HPLPB202436.240384
Chen Jinbao, Xiang Guangbiao, Wang Xiaolin, et al. Experimental study of self-bleaching and radiation equilibrium in output power of fiber lasers at low dose rates[J]. High Power Laser and Particle Beams, 2024, 36: 121001. doi: 10.11884/HPLPB202436.240384
Citation:
Chen Jinbao, Xiang Guangbiao, Wang Xiaolin, et al. Experimental study of self-bleaching and radiation equilibrium in output power of fiber lasers at low dose rates[J]. High Power Laser and Particle Beams, 2024, 36: 121001. doi: 10.11884/HPLPB202436.240384
High-power ytterbium-doped fiber lasers have a wide range of applications in the maintenance of nuclear facilities owing to the advantages of high power, high efficiency, and flexible transmission. However, the irradiation effect in the nuclear facility environment can decrease the power of the fiber laser, which poses a big challenge to applications in such scenarios. Considering the self-bleaching effect of fiber lasers, we explore the relationship between darkening and self-bleaching effect under different irradiation dose rates. When the irradiation dose rate is relatively low, such as 0.1 rad/s, the output power of the 1 kW fiber laser is quite stable with the power fluctuation less than 1.79% during the whole experiment. We name such phenomenon as the self-bleaching and radiation equilibrium (SBRE). It is verified for the first time that under a certain irradiation dose rate, the laser power enhancement caused by the self-bleaching effect of the fiber laser can balance the power decrease caused by the irradiation effect, which provides effective support for the design of fiber lasers in related applications.
Buzinny M, Shepelevich K. The distribution of 137Cs and 90Sr in the biomass of pine trees planted in 1987–1988 in the near zone of the Chernobyl nuclear power plant[J]. Applied Radiation and Isotopes, 2000, 52(4): 905-910. doi: 10.1016/S0969-8043(99)00142-6
[2]
Verma A, Ahmad A, Giovannini F. Nuclear energy, ten years after Fukushima[J]. Nature, 2021, 591(7849): 199-201. doi: 10.1038/d41586-021-00580-4
Lin Aoxiang, Tang Xuan, Zhan Huan, et al. 6 kW Yb-doped aluminophosphosilicate laser fiber[J]. High Power Laser and Particle Beams, 2016, 28: 129901 doi: 10.11884/HPLPB201628.160490
[4]
Shin J S, Oh S Y, Park H, et al. Cutting performance of thick steel plates up to 150 mm in thickness and large size pipes with a 10-kW fiber laser for dismantling of nuclear facilities[J]. Annals of Nuclear Energy, 2018, 122: 62-68. doi: 10.1016/j.anucene.2018.08.029
[5]
Shao C, Ren J, Wang F, et al. Origin of radiation-induced darkening in Yb3+/Al3+/P5+-doped silica glasses: effect of the P/Al ratio[J]. The Journal of Physical Chemistry B, 2018, 122(10): 2809-2820. doi: 10.1021/acs.jpcb.7b12587