Volume 37 Issue 2
Feb.  2025
Turn off MathJax
Article Contents
Zhang Saiqiang, Xu Wanwu, Li Zhiyan, et al. Simulation and experimental characteristics of supersonic center ejector[J]. High Power Laser and Particle Beams, 2025, 37: 021002. doi: 10.11884/HPLPB202537.240209
Citation: Zhang Saiqiang, Xu Wanwu, Li Zhiyan, et al. Simulation and experimental characteristics of supersonic center ejector[J]. High Power Laser and Particle Beams, 2025, 37: 021002. doi: 10.11884/HPLPB202537.240209

Simulation and experimental characteristics of supersonic center ejector

doi: 10.11884/HPLPB202537.240209
  • Received Date: 2024-06-23
  • Accepted Date: 2024-10-18
  • Rev Recd Date: 2024-10-10
  • Available Online: 2024-11-21
  • Publish Date: 2025-02-15
  • Compared with vacuum tank system, supersonic injection technology has significant advantages in pressure recovery of chemical laser weapons, among them, the supersonic center injector has greater injection potential due to its smaller total pressure loss. Simulation and experimental studies were conducted on the supersonic center injector. The results show that for the supersonic center injector with a contraction-type mixing chamber, although it is easier to reach the working state, it is not superior to the straight-type injector under the condition of fixed injection coefficient and maintaining a lower blind cavity pressure. Under the condition of variable injection coefficient (fixed secondary mass flow rate), for every 0.05 increase in the area contraction ratio of the mixing chamber, the primary mass flow rate needs to be increased by approximately 0.3 kg/s to reach the critical start-up state. The overall injection performance of the supersonic injector reaches its highest when it is at the critical start-up state. In terms of blind cavity extraction capability, the single-stage supersonic center injector is significantly superior to other types of injectors, with a minimum of 1.3 kPa achievable.
  • loading
  • [1]
    徐万武. 高性能、大压缩比化学激光器压力恢复系统研究[D]. 长沙: 中国人民解放军国防科学技术大学, 2003: 1-5

    Xu Wanwu. Study of high performance, high compression ratio pressure recovery system for chemical laser[D]. Changsha: National University of Defense Technology, 2003: 1-5
    [2]
    付伟. 战区防御机载氧碘化学激光武器[J]. 兵工自动化, 2001, 20(2):23

    Fu Wei. Airborne oxygen iodine chemical laser weapons for theater defense[J]. Ordnance Industry Automation, 2001, 20(2): 23
    [3]
    林聪榕. 天基化学激光武器的现状及前景[J]. 国防科技参考, 1991, 12(4):14-21

    Lin Congrong. Current status and prospects of space-based chemical laser weapons[J]. National Defense Technology Reference, 1991, 12(4): 14-21
    [4]
    林聪榕. 美国化学激光武器的研究现状及前景(上)[J]. 激光技术, 1993, 17(1):31-35

    Lin Congrong. Research status and prospect of chemical laser weapon in the United States (Part 1)[J]. Laser Technology, 1993, 17(1): 31-35
    [5]
    任伟艳, 孙艳宏, 冯淑娟, 等. 氧碘化学激光器废气排放污染评价[J]. 强激光与粒子束, 2016, 28:071003 doi: 10.11884/HPLPB201628.071003

    Ren Weiyan, Sun Yanhong, Feng Shujuan, et al. Exhaust gas pollution assessment of chemical oxygen-iodine laser[J]. High Power Laser and Particle Beams, 2016, 28: 071003 doi: 10.11884/HPLPB201628.071003
    [6]
    邹建军, 周进, 徐万武, 等. 大压缩比两级燃气引射系统参数匹配试验研究[J]. 强激光与粒子束, 2008, 20(10):1589-1592

    Zou Jianjun, Zhou Jin, Xu Wanwu, et al. Experimental investigation on parameter matching of high compression-ratio two-stage gas ejector system[J]. High Power Laser and Particle Beams, 2008, 20(10): 1589-1592
    [7]
    陈健, 王振国, 吴继平, 等. 等截面超-超引射器流场结构及引射性能[J]. 强激光与粒子束, 2012, 24(6):1301-1305 doi: 10.3788/HPLPB20122406.1301

    Chen Jian, Wang Zhenguo, Wu Jiping, et al. Flow structure and performance of constant-area, supersonic-supersonic ejector[J]. High Power Laser and Particle Beams, 2012, 24(6): 1301-1305 doi: 10.3788/HPLPB20122406.1301
    [8]
    吴继平. 高增压比多喷管超声速引射器设计理论、方法与实验研究[D]. 长沙: 国防科学技术大学, 2007: 3-4

    Wu Jiping. Design theory, method, and experimental investigation of high compression ratio multi-nozzle supersonic ejector[D]. Changsha: National University of Defense Technology, 2007: 3-4
    [9]
    Sun Dawen, Eames I W. Recent developments in the design theories and application of ejectors: a review[R]. Journal of the Institute of Energy, 1995, 68(475): 65-79.
    [10]
    徐万武, 谭建国, 王振国. 高空模拟试车台超声速引射器数值研究[J]. 固体火箭技术, 2003, 26(2):71-74 doi: 10.3969/j.issn.1006-2793.2003.02.020

    Xu Wanwu, Tan Jianguo, Wang Zhenguo. Numerical study on supersonic ejector of simulated altitude test stand[J]. Journal of Solid Rocket Technology, 2003, 26(2): 71-74 doi: 10.3969/j.issn.1006-2793.2003.02.020
    [11]
    王旭, 徐旭. 变截面超-超引射器启动特性数值研究[J]. 强激光与粒子束, 2021, 33:071006 doi: 10.11884/HPLPB202133.200333

    Wang Xu, Xu Xu. Starting characteristics of variable section supersonic-supersonic ejector[J]. High Power Laser and Particle Beams, 2021, 33: 071006 doi: 10.11884/HPLPB202133.200333
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (487) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return