| Citation: | Wang Haiyang, Xu Ming, Cai Xianglong, et al. Study on 1.55 μm Raman laser in ethane gas pumped by |
| [1] |
Rao Han, Liu Zhaojun, Cong Zhenhua, et al. High power YAG/Nd: YAG/YAG ceramic planar waveguide laser[J]. Laser Physics Letters, 2017, 14: 045801. doi: 10.1088/1612-202X/aa5d2d
|
| [2] |
Ma Qinglei, Mo Haiding, Zhao J. High-energy high-efficiency Nd: YLF laser end-pump by 808 nm diode[J]. Optics Communications, 2018, 413: 220-223. doi: 10.1016/j.optcom.2017.12.058
|
| [3] |
刘伟仁, 霍玉晶, 何淑芳. LD抽运的946 nm Nd: YAG激光器及其腔内倍频[J]. 光电子·激光, 2002, 13(3):247-249 doi: 10.3321/j.issn:1005-0086.2002.03.008
Liu Weiren, Huo Yujing, He Shufang. LD pumped 946 nm Nd: YAG laser and intracavity-doubling[J]. Journal of Optoelectronics Laser, 2002, 13(3): 247-249 doi: 10.3321/j.issn:1005-0086.2002.03.008
|
| [4] |
Zhang Ling, Yu Huijuan, Yan Shilian, et al. A 1319 nm diode-side-pumped Nd: YAG laser Q-switched with graphene oxide[J]. Journal of Modern Optics, 2013, 60(15): 1287-1289. doi: 10.1080/09500340.2013.837975
|
| [5] |
Chen Yubin, Wang Zefeng, Li Zhixian, et al. Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 μm[J]. Optics Express, 2017, 25(17): 20944-20949. doi: 10.1364/OE.25.020944
|
| [6] |
Cai Xianglong, Zhou Canhua, Zhou Dongjian, et al. H2 stimulated Raman scattering in a multi-pass cell with a Herriott configuration[J]. Chinese Physics Letters, 2015, 32: 114207. doi: 10.1088/0256-307X/32/11/114207
|
| [7] |
Grasiuk A Z, Zubarev I G, Efimkov V F, et al. High-power SRS lasers – coherent summators (the way it was)[J]. Quantum Electronics, 2012, 42(12): 1064-1072. doi: 10.1070/QE2012v042n12ABEH015060
|
| [8] |
Stewart R B, Kung R T V. A kilohertz repetition rate 1.9 μm H2 Raman oscillator[J]. IEEE Journal of Quantum Electronics, 1989, 25(10): 2142-2148. doi: 10.1109/3.35728
|
| [9] |
Goehlich A, Czarnetzki U, Döbele H F. Increased efficiency of vacuum ultraviolet generation by stimulated anti-Stokes Raman scattering with Stokes seeding[J]. Applied Optics, 1998, 37(36): 8453-8459. doi: 10.1364/AO.37.008453
|
| [10] |
Li D J, Yang G L, Chen F, et al. Stimulated rotational Raman scattering at multiwavelength under tea CO2 laser pumping with a multiple-pass cell[J]. Laser Physics, 2012, 22(5): 937-940. doi: 10.1134/S1054660X12050167
|
| [11] |
Zheng Tiancheng, Cai Xianglong, Li Zhonghui, et al. Stimulated Raman scattering in CH4 gas using single cylindrical lens focusing[J]. Optics Communications, 2021, 493: 126987. doi: 10.1016/j.optcom.2021.126987
|
| [12] |
Xu Ming, Liu Dong, Cai Xianglong, et al. High efficiency ethane Raman laser pumped by 532 nm laser[J]. Results in Optics, 2023, 12: 100436. doi: 10.1016/j.rio.2023.100436
|
| [13] |
Liu Dong, Cai Xianglong, Li Zhonghui, et al. The threshold reduction of SRS in deuterium by multi-pass configuration[J]. Optics Communications, 2016, 379: 36-40. doi: 10.1016/j.optcom.2016.05.040
|
| [14] |
Zhou Dongjian, Guo Jingwei, Zhou Canhua, et al. Intracavity CH4 Raman laser using negative-branch unstable resonator[J]. Optics Communications, 2015, 356: 49-53. doi: 10.1016/j.optcom.2015.07.025
|
| [15] |
Vodchits A I, Orlovich V A, Werncke W, et al. Influence of gas circulation on stimulated Raman scattering and amplification of ultrashort laser pulses in methane[J]. Optics Communications, 2008, 281(11): 3190-3195. doi: 10.1016/j.optcom.2008.02.019
|
| [16] |
Li Hao, Huang Wei, Cui Yulong, et al. 3 W tunable 1.65 μm fiber gas Raman laser in D2-filled hollow-core photonic crystal fibers[J]. Optics & Laser Technology, 2020, 132: 106474.
|
| [17] |
Kochanov V P, Kuryak A N, Makogon M M, et al. Spontaneous and backward stimulated Raman scattering of light in methane[J]. Optics and Spectroscopy, 2006, 101(2): 183-190. doi: 10.1134/S0030400X06080030
|
| [18] |
Kazzaz A, Ruschin S, Shoshan I, et al. Stimulated Raman scattering in methane-experimental optimization and numerical model[J]. IEEE Journal of Quantum Electronics, 1994, 30(12): 3017-3024. doi: 10.1109/3.362703
|
| [19] |
Zheng Tiancheng, Cai Xianglong, Shen Chencheng, et al. The investigation of stimulated Raman scattering in gases under di-harmonic pumping[J]. Optics Communications, 2022, 516: 128246. doi: 10.1016/j.optcom.2022.128246
|
| [20] |
Li Zhixian, Zhou Zhiyue, Huang Wei, et al. Efficient 1.55 μm fiber source by stimulated Raman scattering in ethane-filled hollow-core fiber[J]. Optical Engineering, 2018, 57: 056115.
|
| [21] |
蔡向龙, 李仲慧, 刘栋, 等. 基于氘气受激拉曼散射的1.6 μm波段大能量脉冲激光研究[J]. 中国激光, 2022, 49:1101001 doi: 10.3788/CJL202249.1101001
Cai Xianglong, Li Zhonghui, Liu Dong, et al. High energy pulsed laser in 1.6 μm waveband based on deuterium gas stimulated Raman scattering[J]. Chinese Journal of Lasers, 2022, 49: 1101001 doi: 10.3788/CJL202249.1101001
|
| [22] |
Odashima J, Shinoda Y, Takeda H. Estimation method of photovoltaic power output using extended Lambert-Beer law[J]. Electrical Engineering in Japan, 2020, 212(1/4): 35-42.
|
| [23] |
魏合理, 邬承就, 龚知本. 1.315 μm波长附近实际大气高分辨率吸收光谱[J]. 强激光与粒子束, 2002, 14(1):35-40
Wei Heli, Wu Chengjiu, Gong Zhiben. High-resolution absorption spectra of real atmosphere at 1.315 μm[J]. High Power Laser and Particle Beams, 2002, 14(1): 35-40
|
| [24] |
Hargreaves R J, Buzan E, Dulick M, et al. High-resolution absorption cross sections of C2H6 at elevated temperatures[J]. Molecular Astrophysics, 2015, 1: 20-25. doi: 10.1016/j.molap.2015.09.001
|
| [25] |
Hemmati H. Interplanetary laser communications and precision ranging[J]. Laser & Photonics Reviews, 2011, 5(5): 697-710.
|
| [26] |
Dicaire I, Jukna V, Praz C, et al. Spaceborne laser filamentation for atmospheric remote sensing[J]. Laser & Photonics Reviews, 2016, 10(3): 481-493.
|
| [27] |
Dequal D, Agnesi C, Sarrocco D, et al. 100 kHz satellite laser ranging demonstration at Matera Laser Ranging Observatory[J]. Journal of Geodesy, 2021, 95: 26. doi: 10.1007/s00190-020-01469-2
|