Volume 37 Issue 2
Feb.  2025
Turn off MathJax
Article Contents
Wen Yilan, Li Haiyan, Gan Huaquan, et al. CUP-VISAR image reconstruction based on iterative-interframe double prediction[J]. High Power Laser and Particle Beams, 2025, 37: 022002. doi: 10.11884/HPLPB202537.240247
Citation: Wen Yilan, Li Haiyan, Gan Huaquan, et al. CUP-VISAR image reconstruction based on iterative-interframe double prediction[J]. High Power Laser and Particle Beams, 2025, 37: 022002. doi: 10.11884/HPLPB202537.240247

CUP-VISAR image reconstruction based on iterative-interframe double prediction

doi: 10.11884/HPLPB202537.240247
  • Received Date: 2024-08-03
  • Accepted Date: 2024-12-23
  • Rev Recd Date: 2024-12-20
  • Available Online: 2025-01-13
  • Publish Date: 2025-02-15
  • CUP-VISAR system is a new technology that combines Compressed Ultrafast Photography (CUP) with two-dimensional Velocity Interferometer System for Any Reflector (VISAR). To solve the problem that the image reconstruction quality of CUP-VISAR system decreases obviously under the condition of large noise, a compressed ultrafast photography reconstruction method based on iteration-interframe dual prediction is proposed. Using this method, the correlation of inter-frame image data and the correlation of iterations before and after the same frame image are studied. The compressed image reconstruction problem is presented as an iteration-inter frame dual prediction optimization problem based on Kalman prediction and inter-frame prediction, and the Plug-and-Play Generalized Alternating Projection (PnP-GAP) framework is used to solve the optimization problem effectively. Simulation results show that the minimum Peak Signal-to-Noise Ratio (PSNR) and minimum Structure Similarity Index Measure (SSIM) of the proposed method are increased by 3.18−2.11 dB and 20.30%−8.22% under large Gaussian noise conditions. The practical results show that the proposed method can obtain higher definition of fringe image, and the reconstructed line-VISAR (1D-VISAR) fringe movement trend is clearer, which verifies the effectiveness of the algorithm.
  • loading
  • [1]
    Guan Zanyang, Li Yulong, Wang Feng, et al. Study on the length of diagnostic time window of CUP-VISAR[J]. Measurement Science and Technology, 2021, 32: 125208. doi: 10.1088/1361-6501/ac29d4
    [2]
    吴宇际, 王秋平, 王峰, 等. 广角任意反射面速度干涉仪的光学性质研究[J]. 强激光与粒子束, 2019, 31:032001 doi: 10.11884/HPLPB201931.190045

    Wu Yuji, Wang Qiuping, Wang Feng, et al. Optical properties of wide-angle velocity interferometer system for any reflector[J]. High Power Laser and Particle Beams, 2019, 31: 032001 doi: 10.11884/HPLPB201931.190045
    [3]
    Ma Zijian. The progress and the state-of-art facilities of inertial confinement fusion[J]. Journal of Physics: Conference Series, 2022, 2386: 012057. doi: 10.1088/1742-6596/2386/1/012057
    [4]
    Yang Yongmei, Li Yulong, Guan Zanyang, et al. A diagnostic system toward high-resolution measurement of wavefront profile[J]. Optics Communications, 2020, 456: 124554. doi: 10.1016/j.optcom.2019.124554
    [5]
    Qi Dalong, Zhang Shian, Yang Chengshuai, et al. Single-shot compressed ultrafast photography: a review[J]. Advanced Photonics, 2020, 2: 014003.
    [6]
    黎淼, 余柏汕, 王玺, 等. 基于全变分正则约束的二维冲击波速度场条纹重构技术[J]. 光学学报, 2023, 43:1911003 doi: 10.3788/AOS230777

    Li Miao, Yu Baishan, Wang Xi, et al. Fringe reconstruction technology of two-dimensional shock wave velocity field based on total variation regularization constraints[J]. Acta Optica Sinica, 2023, 43: 1911003 doi: 10.3788/AOS230777
    [7]
    Zhang Yan, Li Jie, Li Xinyue, et al. Image stripe noise removal based on compressed sensing[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2022, 36: 2254004. doi: 10.1142/S0218001422540040
    [8]
    王峰, 理玉龙, 关赞洋, 等. 压缩感知技术在激光惯性约束聚变研究中的应用[J]. 强激光与粒子束, 2022, 34:031021 doi: 10.11884/HPLPB202234.210250

    Wang Feng, Li Yulong, Guan Zanyang, et al. Application of compressed sensing technology in laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 2022, 34: 031021 doi: 10.11884/HPLPB202234.210250
    [9]
    Wang Xi, Zhang Lei, Miao Li, et al. Research into CUP-VISAR velocity reconstruction based on weighted DRUNet and total variation joint optimization[J]. Optics Letters, 2023, 48(20): 5181-5184. doi: 10.1364/OL.498607
    [10]
    郑铠涛, 李海艳, 甘华权, 等. 基于低秩约束和全变分正则化的CUP-VISAR压缩图像重构算法[J]. 强激光与粒子束, 2023, 35:072002 doi: 10.11884/HPLPB202335.230011

    Zheng Kaitao, Li Haiyan, Gan Huaquan, et al. CUP-VISAR image reconstruction based on low-rank prior and total-variation regularization[J]. High Power Laser and Particle Beams, 2023, 35: 072002 doi: 10.11884/HPLPB202335.230011
    [11]
    黄庆鑫, 李海艳, 甘华权, 等. 基于变加速广义交替投影的CUP-VISAR压缩图像反演算法[J]. 光学学报, 2023, 43:2111004 doi: 10.3788/AOS230726

    Huang Qingxin, Li Haiyan, Gan Huaquan, et al. CUP-VISAR compressed image inversion algorithm based on variable-accelerated generalized alternating projection[J]. Acta Optica Sinica, 2023, 43: 2111004 doi: 10.3788/AOS230726
    [12]
    Gao Liang, Liang Jinyang, Li Chiye, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 2014, 516(7529): 74-77. doi: 10.1038/nature14005
    [13]
    Madych W R. Solutions of underdetermined systems of linear equations[C]//Spatial Statistics and Imaging: Papers from the Research Conference on Image Analysis and Spatial Statistics Held. 1991: 227-238.
    [14]
    牟晓霜, 黎淼, 王玺, 等. 基于分块平滑投影二次重构算法的单像素成像系统[J]. 强激光与粒子束, 2022, 34:119002 doi: 10.11884/HPLPB202234.220190

    Mou Xiaoshuang, Li Miao, Wang Xi, et al. Single-pixel imaging system based on block smoothed projected quadratic reconstruction algorithm[J]. High Power Laser and Particle Beams, 2022, 34: 119002 doi: 10.11884/HPLPB202234.220190
    [15]
    高秋玲, 成巍, 李文龙, 等. 复杂背景下的结构光条纹中心提取算法研究[J]. 山东科学, 2024, 37(2):65-73 doi: 10.3976/j.issn.1002-4026.20230133

    Gao Qiuling, Cheng Wei, Li Wenlong, et al. Centerline extraction algorithm of structured light streak in a complex background[J]. Shandong Science, 2024, 37(2): 65-73 doi: 10.3976/j.issn.1002-4026.20230133
    [16]
    徐瑶. 正反格雷码与相移周期错位矫正的视觉测量及目标重建[D]. 哈尔滨: 哈尔滨理工大学, 2023

    Xu Yao. Visual measurement and object reconstruction based on forward and inverse gray code and phase shift period dislocation correction[D]. Harbin: Harbin University of Science and Technology, 2023
    [17]
    余远平, 李海艳, 甘华权, 等. 基于卡尔曼滤波的双约束CUP-VISAR压缩图像重构算法[J]. 强激光与粒子束, 2023, 35:082005 doi: 10.11884/HPLPB202335.230100

    Yu Yuanping, Li Haiyan, Gan Huaquan, et al. Double-constrained CUP-VISAR compressed image reconstruction algorithm based on Kalman filtering[J]. High Power Laser and Particle Beams, 2023, 35: 082005 doi: 10.11884/HPLPB202335.230100
    [18]
    Sumbul U, Santos J M, Pauly J M. Improved time series reconstruction for dynamic magnetic resonance imaging[J]. IEEE Transactions on Medical Imaging, 2009, 28(7): 1093-1104. doi: 10.1109/TMI.2008.2012030
    [19]
    Teodoro M F, Pereira C, Henriques P, et al. Prediction of ship movement using a Kalman filter algorithm[J]. Advances in Science and Technology, 2024, 144: 93-100.
    [20]
    Feng Shuo, Li Xuegui, Zhang Shuai, et al. A review: state estimation based on hybrid models of Kalman filter and neural network[J]. Systems Science & Control Engineering, 2023, 11: 2173682.
    [21]
    Puspitaningtyas D A, Mulyantoro D K, Sudiyono S. Kalman filter for artifact reduction in MRI imaging: a literature review[J]. Applied Mechanics and Materials, 2023, 913: 79-88. doi: 10.4028/p-143r36
    [22]
    Sun Xiaoqi, Gao Wenxi, Duan Yinong. MR brain image segmentation using a fuzzy weighted multiview possibility clustering algorithm with low-rank constraints[J]. Journal of Medical Imaging and Health Informatics, 2021, 11(2): 402-408. doi: 10.1166/jmihi.2021.3280
    [23]
    Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J]. IEEE Transactions on Image Processing, 2009, 18(11): 2419-2434. doi: 10.1109/TIP.2009.2028250
    [24]
    Yuan Xin, Liu Yang, Suo Jinli, et al. Plug-and-play algorithms for large-scale snapshot compressive imaging[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 1444-1454.
    [25]
    Jin Jianqiu, Yang Bailing, Liang Kewei, et al. General image denoising framework based on compressive sensing theory[J]. Computers & Graphics, 2014, 38: 382-391.
    [26]
    Mathew R S, Paul J S. Automated regularization parameter selection using continuation based proximal method for compressed sensing MRI[J]. IEEE Transactions on Computational Imaging, 2020, 6: 1309-1319. doi: 10.1109/TCI.2020.3019111
    [27]
    马坚伟, 徐杰, 鲍跃全, 等. 压缩感知及其应用: 从稀疏约束到低秩约束优化[J]. 信号处理, 2012, 28(5):609-623 doi: 10.3969/j.issn.1003-0530.2012.05.001

    Ma Jianwei, Xu Jie, Bao Yuequan, et al. Compressive sensing and its application: from sparse to low-rank regularized optimization[J]. Journal of Signal Processing, 2012, 28(5): 609-623 doi: 10.3969/j.issn.1003-0530.2012.05.001
    [28]
    Gillis N, Glineur F. Low-rank matrix approximation with weights or missing data is NP-hard[J]. SIAM Journal on Matrix Analysis and Applications, 2011, 32(4): 1149-1165. doi: 10.1137/110820361
    [29]
    Zhang Fan, Fan Hui, Liu Peiqiang, et al. Image denoising using hybrid singular value thresholding operators[J]. IEEE Access, 2020, 8: 8157-8165. doi: 10.1109/ACCESS.2020.2964683
    [30]
    Wang Zhou, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861
    [31]
    何南南, 解凯, 李桐, 等. 图像质量评价综述[J]. 北京印刷学院学报, 2017, 25(2):47-50 doi: 10.3969/j.issn.1004-8626.2017.02.012

    He Nannan, Xie Kai, Li Tong, et al. Overview of image quality assessment[J]. Journal of Beijing Institute of Graphic Communication, 2017, 25(2): 47-50 doi: 10.3969/j.issn.1004-8626.2017.02.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (392) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return