Volume 37 Issue 1
Dec.  2025
Turn off MathJax
Article Contents
Wu Wenlong, Lin Donghui, Niu Longfei, et al. Cleanliness control of vacuum system in high-flux laser device[J]. High Power Laser and Particle Beams, 2025, 37: 012002. doi: 10.11884/HPLPB202537.240266
Citation: Wu Wenlong, Lin Donghui, Niu Longfei, et al. Cleanliness control of vacuum system in high-flux laser device[J]. High Power Laser and Particle Beams, 2025, 37: 012002. doi: 10.11884/HPLPB202537.240266

Cleanliness control of vacuum system in high-flux laser device

doi: 10.11884/HPLPB202537.240266
  • Received Date: 2024-08-16
  • Accepted Date: 2024-12-05
  • Rev Recd Date: 2024-12-05
  • Available Online: 2024-12-18
  • Publish Date: 2025-12-13
  • During the operation of vacuum system in high-flux laser device, molecular contamination generated by the pump lubricating oil in the vacuum environment may diffuse and deposit on the surface of optical system components, induce damage under high-flux laser irradiation, and reduce the devices’ load capacity. Research has been conducted on the cleanliness control of vacuum systems, and a series of technical measures have been developed to control the vacuum system cleanliness, including optimizing the vacuum pump group, increasing low-temperature cold trap adsorption, and adding online heating regeneration technology for the cold trap. The experimental research results show that after 120 h of continuous operation, the average surface deposition of non-volatile residues in the vacuum system reaches a clean level of 2.86 × 10−9 g/cm2 after 24 h; The transmittance at 350 nm and the damage density curve below 12.3 J/cm2 flux of the fused quartz optical test piece assessment group and control group are basically consistent, proving the effectiveness of this method.
  • loading
  • [1]
    Manes K R, Spaeth M L, Adams J J, et al. Damage mechanisms avoided or managed for NIF large optics[J]. Fusion Science and Technology, 2016, 69(1): 146-249. doi: 10.13182/FST15-139
    [2]
    Nicolaizeau M, Miquel J L. LMJ status: fifth bundle commissioning and PW class laser coupling[C]//Proceedings of SPIE 10898, High Power Lasers for Fusion Research V. 2019: 1089802.
    [3]
    Bass M. When everything damaged and we didn’t know why[C]//Proceedings of SPIE 10805, Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference. 2018: 1080504.
    [4]
    许彬, 李斌成, 高椿明, 等. 真空环境下低损耗高反射光学元件性能退化特性[J]. 激光技术, 2020, 44(6):768-772

    Xu Bin, Li Bincheng, Gao Chunming, et al. Performance degradation of low-loss highly-reflective mirrors under vacuum environment[J]. Laser Technology, 2020, 44(6): 768-772
    [5]
    Pryatel J A, Gourdin W H, Frieders S C, et al. Cleaning practices and facilities for the National Ignition Facility (NIF)[C]//Proceedings of SPIE 9237, Laser-Induced Damage in Optical Materials. 2014: 92372H.
    [6]
    焦子龙, 庞贺伟, 易忠, 等. 卫星真空热试验污染物成分分析[J]. 航天器环境工程, 2009, 26(3):240-243

    Jiao Zilong, Pang Hewei, Yi Zhong, et al. The identification of molecular contaminant in thermal vacuum test[J]. Spacecraft Environment Engineering, 2009, 26(3): 240-243
    [7]
    张洪波, 刘天雄, 李长江. 卫星热真空试验微波开关分子污染防护研究[J]. 航天器工程, 2011, 20(5):125-130

    Zhang Hongbo, Liu Tianxiong, Li Changjiang. Research on prevention of molecular contamination of microwave switches in thermal vacuum test for satellite[J]. Spacecraft Engineering, 2011, 20(5): 125-130
    [8]
    刘天雄, 罗成, 朱剑涛, 等. 热真空试验中分子污染敏感单机的失效机理及对策[J]. 航天器工程, 2014, 23(1):47-52

    Liu Tianxiong, Luo Cheng, Zhu Jiantao, et al. Failure mechanism and countermeasure of unit sensitive to molecular contamination in thermal vacuum test[J]. Spacecraft Engineering, 2014, 23(1): 47-52
    [9]
    焦子龙, 姜利祥, 孙继鹏, 等. 空间光学系统真空热试验污染控制经验综述[J]. 航天器环境工程, 2015, 32(4):445-450 doi: 10.12126/see.2015.04.020

    Jiao Zilong, Jiang Lixiang, Sun Jipeng, et al. Overview of contamination controls for space-based optical systems in thermal vacuum tests[J]. Spacecraft Environment Engineering, 2015, 32(4): 445-450 doi: 10.12126/see.2015.04.020
    [10]
    焦子龙, 姜利祥, 孙继鹏, 等. 星载激光雷达系统污染增强损伤效应及防护试验研究[J]. 航天器环境工程, 2017, 34(4):419-423

    Jiao Zilong, Jiang Lixiang, Sun Jipeng, et al. Tests for contamination enhanced and laser-induced damage in spaceborne lidar system and its prevention[J]. Spacecraft Environment Engineering, 2017, 34(4): 419-423
    [11]
    Pryatel J A, Gourdin W H, Hampton G J, et al. Qualification of materials for applications in high fluence lasers[C]//Proceedings of SPIE 6403, Laser-Induced Damage in Optical Materials. 2007: 640329.
    [12]
    牛龙飞, 尤辉, 吕海兵, 等. 激光系统用密封圈除气对真空光学元件性能影响[J]. 强激光与粒子束, 2023, 35:061004 doi: 10.11884/HPLPB202335.220390

    Niu Longfei, You Hui, Lü Haibing, et al. Influence of vacuum baking O-rings on optical properties of laser system[J]. High Power Laser and Particle Beams, 2023, 35: 061004 doi: 10.11884/HPLPB202335.220390
    [13]
    赵飞, 张晓妹, 刘鸣, 等. 多重接触式静密封泄漏特性定量分析模型[J]. 机械工程师, 2022(12):45-17,50

    Zhao Fei, Zhang Xiaomei, Liu Ming, et al. Quantitative analysis model for leakage characteristics of multi-contact static seal[J]. Mechanical Engineer, 2022(12): 45-17,50
    [14]
    Henrist M, Cucchiaro A, Domken I, et al. The space simulation facilities at IAL SPACE[C]//Proceedings of 16th Space Simulation Conference Confirming Spaceworthiness Into the Next Millennium. 1990: 314-322.
    [15]
    Straka S, Peters W, Hasegawa M, et al. Development of molecular adsorber coatings[C]//Proceedings of SPIE 7794, Optical System Contamination: Effects, Measurements, and Control 2010. 2010: 77940C.
    [16]
    Miller P E, Thorsness C B, Ertel J, et al. Use of silica gel as a getter for the protection of sol-gel coated optics: concept verification[R]. Livermore: Lawrence Livermore National Lab. , 2014.
    [17]
    王先荣, 颜则东. 分子凝结与凝结表面温度的关系机理研究[J]. 宇航学报, 2004, 25(3):327-329

    Wang Xianrong, Yan Zedong. The mechanism research upon the relationship between molecular condensation and sensitive surface temperature[J]. Journal of Astronautics, 2004, 25(3): 327-329
    [18]
    杨东升, 臧卫国, 于钱. 低温石英天平在材料放气污染特性测试中的应用[J]. 航天器环境工程, 2005, 22(5):300-303 doi: 10.3969/j.issn.1673-1379.2005.05.011

    Yang Dongsheng, Zang Weiguo, Yu Qian. Application of low temperature QCM to outgassing contamination characteristics detection of spacecraft materials[J]. Spacecraft Environment Engineering, 2005, 22(5): 300-303 doi: 10.3969/j.issn.1673-1379.2005.05.011
    [19]
    刘玉魁. 真空工程设计[M]. 北京: 化学工业出版社, 2016

    Liu Yukui. Design of vacuum engineering[M]. Beijing: Chemical Industry Press, 2016
    [20]
    ISO 11254-2: 2001, Lasers and laser-related equipment – determination of laser-induced damage threshold of optical surfaces[S].
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views (566) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return