| Citation: | Bao Yu, He Xiang, Chen Jianping, et al. Effect of plasma on transmission characteristics of high-frequency microwave[J]. High Power Laser and Particle Beams, 2025, 37: 013003. doi: 10.11884/HPLPB202537.240296 |
| [1] |
Poorreza E, Gargari N D. Modeling and simulation of a microwave-assisted plasma with different input power for plasma-based applications[J]. Russian Journal of Physical Chemistry B, 2023, 17(3): 719-724. doi: 10.1134/S1990793123030235
|
| [2] |
Ikeda Y, Soriano J K, Kawahara N, et al. Spatially and temporally resolved plasma formation on alumina target in microwave-enhanced laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 197: 106533. doi: 10.1016/j.sab.2022.106533
|
| [3] |
Zhang Chaoyang, Fu Wenjie, Hu Shijie, et al. Investigation on continuous and modulated microwave plasma filaments at atmospheric pressure[J]. IEEE Access, 2021, 9: 154318-154323. doi: 10.1109/ACCESS.2021.3128610
|
| [4] |
Barnes B K, Ouro-Koura H, Derickson J, et al. Plasma generation by household microwave oven for surface modification and other emerging applications[J]. American Journal of Physics, 2021, 89(4): 372-282. doi: 10.1119/10.0002706
|
| [5] |
Zhao Chengwei, Li Xiaoping, Liu Yanming, et al. Research on plasma electron density distribution based on microwave diffraction[J]. Plasma Sources Science and Technology, 2022, 31: 015007. doi: 10.1088/1361-6595/ac39ad
|
| [6] |
Ye Xin, Wang Yongge, Yao Jingfeng, et al. Plasma-enabled microwave modulation for continuous beam scanning[J]. Journal of Physics D: Applied Physics, 2022, 55: 435202. doi: 10.1088/1361-6463/ac8da1
|
| [7] |
Zhang Jianwei, Luo Wei, Jiang Ming, et al. Plasma propagation in the microwave window breakdown at the air/dielectric interface[J]. Plasma Sources Science and Technology, 2020, 29: 025013. doi: 10.1088/1361-6595/ab6e59
|
| [8] |
Mu Xiangchao, Dong Guoxiang, Li Xiaoping, et al. Analysis of the electromagnetic wave transmission characteristics in inhomogeneous plasma based on an equivalent circuit model[J]. IEEE Transactions on Plasma Science, 2024, 52(3): 698-706. doi: 10.1109/TPS.2024.3371100
|
| [9] |
Noori E. Investigation of near cut-off properties of electromagnetic wave propagation in homogeneous, collisional plasma slab[J]. Contributions to Plasma Physics, 2022, 62: e202200016. doi: 10.1002/ctpp.202200016
|
| [10] |
Zhang Chaoyang, Chen Chi, Fu Wenjie, et al. Investigation on the microwave excited plasma filament at atmospheric pressure[J]. IEEE Transactions on Plasma Science, 2021, 49(6): 1877-1881. doi: 10.1109/TPS.2021.3075574
|
| [11] |
Zhao Yuexing, Su Ruiming, Ma Jinping, et al. SO-FDTD simulation on the transmission characteristics of terahertz waves in inhomogeneous magnetized dusty plasma[J]. The European Physical Journal D, 2024, 78: 32. doi: 10.1140/epjd/s10053-024-00824-8
|
| [12] |
Wan Xiaohuan, Zhou Zhikun, Zhang Juan, et al. Propagation characteristics of obliquely incident terahertz waves in high-temperature magnetized plasma[J]. IEEE Transactions on Plasma Science, 2022, 50(2): 241-249. doi: 10.1109/TPS.2021.3139373
|
| [13] |
Zhou Zhikun, Wan Xiaohuan, Zhang Juan, et al. Influence of temperature on terahertz waves propagating in magnetized plasma[J]. Physica Scripta, 2021, 96: 075607. doi: 10.1088/1402-4896/abfcf1
|
| [14] |
Shen Fangfang, Zhang Zhongdao, Bai Bowen, et al. Research on the reflection characteristics of the broadband electromagnetic wave in nonuniform plasma[J]. IEEE Transactions on Plasma Science, 2024, 52(3): 657-665. doi: 10.1109/TPS.2024.3373645
|
| [15] |
Zhang Jie, Li Miao, Han Bing. Analysis of electromagnetic waves reflected by re-entry plasma sheath based on CSO-FDTD[J]. Physica Scripta, 2023, 98: 095610. doi: 10.1088/1402-4896/acf0f9
|
| [16] |
Zhang Youyi, Xu Guanjun, Zheng Zhengqi. Terahertz waves propagation in an inhomogeneous plasma layer using the improved scattering-matrix method[J]. Waves in Random and Complex Media, 2021, 31(6): 2466-2480. doi: 10.1080/17455030.2020.1757177
|
| [17] |
Lyu Xingbao, Yuan Chengxun, Avtaeva S, et al. Attenuation of microwave radiation by post-anode plasma in a composite grid electrode structure[J]. IEEE Access, 2022, 10: 7675-7683. doi: 10.1109/ACCESS.2022.3143582
|
| [18] |
Vhanmore B D, Rajmane S P, Sadale S B, et al. Dominance of polarization modes and absorption on self-focusing of laser beams in collisionless magnetized plasma[J]. Journal of Nonlinear Optical Physics & Materials, 2024.
|
| [19] |
Chen Peiqi, Nie Qiuyue, Zhang Zhonglin, et al. Integrative implementation of scattering reduction and radiation enhancement for an electrically small antenna by subwavelength plasmas[J]. Physics of Plasmas, 2024, 31: 073503. doi: 10.1063/5.0211317
|
| [20] |
Metelskii I I, Kovalev V F, Bychenkov V Y. Nonlinear laser radiation absorption due to relativistic plasma resonance in an inhomogeneous plasma[J]. Journal of Experimental and Theoretical Physics, 2021, 133(2): 236-252. doi: 10.1134/S1063776121080069
|
| [21] |
Sun Jinhai, Zhao Yarui, Yin Hongcheng, et al. An open simulation model for terahertz wave transmission in plasma[J]. Journal of Applied Physics, 2024, 135: 153104. doi: 10.1063/5.0199442
|
| [22] |
Desai M, Ghosh P, Kumar A, et al. Deep-learning architecture-based approach for 2-D-simulation of microwave plasma interaction[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(12): 5359-5368. doi: 10.1109/TMTT.2022.3217138
|
| [23] |
Janicek A, Thornton E, Garrett T, et al. Length dependence on broadband microwave emission from laser-generated plasmas[J]. IEEE Transactions on Plasma Science, 2020, 48(6): 1979-1983. doi: 10.1109/TPS.2020.2988762
|
| [24] |
Chang Qi, Ma Yunpeng, Liu Ji, et al. Simulation of electromagnetic waves in plasma by subdomain-level nonconformal DGTD method[J]. IEEE Transactions on Plasma Science, 2022, 50(11): 4775-4781. doi: 10.1109/TPS.2022.3214215
|
| [25] |
Zhou Zhikun, Wan Xiaohuan, Li Xiaolin, et al. SO-FDTD analysis on transmission characteristics of terahertz wave in plasma[J]. Physics of Plasmas, 2021, 28: 072105. doi: 10.1063/5.0053611
|
| [26] |
Wang Ge, Pan Hui, Lai Shimiao, et al. Dynamic measurement of relative complex permittivity of microwave plasma at atmospheric pressure[J]. Processes, 2021, 9: 1812. doi: 10.3390/pr9101812
|
| [27] |
Yao Jingfeng, Yu Zhi, Yuan Chengxun, et al. The influence of plasma distribution on microwave reflection in a plasma-metal model[J]. IEEE Transactions on Plasma Science, 2020, 48(2): 359-363. doi: 10.1109/TPS.2019.2943519
|
| [28] |
Liu Yanming, Zhang Xi, Bai Bowen, et al. A calculation method of electromagnetic wave reflection in plasma sheath environment[J]. IEEE Transactions on Plasma Science, 2022, 50(7): 2030-2038. doi: 10.1109/TPS.2022.3181220
|
| [29] |
Zhang Chaoyang, Lu Dun, Hu Shijie, et al. An economic real-time microwave plasma impedance measurement method[J]. IEEE Transactions on Plasma Science, 2021, 49(11): 3503-3508. doi: 10.1109/TPS.2021.3115846
|
| [30] |
Pak I H, Kim Y H, Oh C H, et al. Transmission characteristics of electromagnetic waves in a semicircular plasma filament layer generated by a femtosecond laser[J]. Contributions to Plasma Physics, 2021, 61: e202100032. doi: 10.1002/ctpp.202100032
|
| [31] |
王彦同, 帕提曼·阿不都玛洪, 石雁祥, 等. 弱电离尘埃等离子体微波衰减理论的实验研究[J]. 电波科学学报, 2020, 35(6):967-973
Wang Yantong, Abudoumahong P, Shi Yanxiang, et al. Experimental study on microwave attenuation theory of weakly ionized dusty plasma[J]. Chinese Journal of Radio Science, 2020, 35(6): 967-973
|
| [32] |
Moshkov A V, Pozhidaev V N. Numerical simulation of very-low-frequency waves passing through the magnetoactive plane-layered plasma of Earth's lower ionosphere[J]. Journal of Communications Technology and Electronics, 2020, 65(5): 472-479. doi: 10.1134/S1064226920050101
|
| [33] |
Ma Zhu, Wei Min, Li Meng, et al. Study on electromagnetic characteristics of plasma model-based on the symplectic multiresolution time-domain scheme[J]. Modern Physics Letters B, 2020, 34: 2050046.
|
| [34] |
Bao Yu, He Xiang, Su Wei, et al. Study on the generation of terahertz waves in collision plasma[J]. Physics of Plasmas, 2024, 31: 093302. doi: 10.1063/5.0219947
|
| [35] |
潘惠, 王舸, 杨阳. 大气压微波等离子体射流装置放电特性研究[J]. 强激光与粒子束, 2022, 34:049001 doi: 10.11884/HPLPB202234.210277
Pan Hui, Wang Ge, Yang Yang. Design and study of atmospheric pressure microwave plasma jet[J]. High Power Laser and Particle Beams, 2022, 34: 049001 doi: 10.11884/HPLPB202234.210277
|
| [36] |
陈煜青, 王蕾, 赵立山, 等. 等离子体鞘套低频通信电磁波透射率与辐照微波场强关系仿真研究[J]. 强激光与粒子束, 2023, 35:089001 doi: 10.11884/HPLPB202335.220361
Chen Yuqing, Wang Lei, Zhao Lishan, et al. Simulation study of the relationship between low-frequency communication EM wave transmissivity of plasma sheaths and irradiation microwave E-field strength[J]. High Power Laser and Particle Beams, 2023, 35: 089001 doi: 10.11884/HPLPB202335.220361
|