Volume 37 Issue 3
Feb.  2025
Turn off MathJax
Article Contents
Zhu Weilong, Wang Peng, Zheng Chenya, et al. Design of high-frequency, high-power density hybrid integrated power supply based on GaN high electron mobility transistors[J]. High Power Laser and Particle Beams, 2025, 37: 035015. doi: 10.11884/HPLPB202537.240318
Citation: Zhu Weilong, Wang Peng, Zheng Chenya, et al. Design of high-frequency, high-power density hybrid integrated power supply based on GaN high electron mobility transistors[J]. High Power Laser and Particle Beams, 2025, 37: 035015. doi: 10.11884/HPLPB202537.240318

Design of high-frequency, high-power density hybrid integrated power supply based on GaN high electron mobility transistors

doi: 10.11884/HPLPB202537.240318
  • Received Date: 2024-09-08
  • Accepted Date: 2025-02-16
  • Rev Recd Date: 2025-02-16
  • Available Online: 2025-03-06
  • Publish Date: 2025-03-15
  • Hybrid integrated DC-DC converters are widely used in harsh environments and applications with high-reliability requirements due to their wide operating temperature range and long-term reliability. This paper presents the design of a hybrid integrated DC-DC converter with an input voltage of 28 V and an output of 5 V/20 A, leveraging the excellent high-frequency, low-loss characteristics of gallium nitride (GaN) devices. The design incorporates an active clamp soft-switching topology, hybrid integrated micro-assembly technology, and high-current, low thermal resistance hermetic packaging techniques. The converter operates at a switching frequency of 800 kHz and achieves a peak efficiency of 92%. The paper elaborates in detail on the design methods and technical details of the active clamp power circuit, the control of parasitic parameters and oscillating voltage in the GaN HEMT drive circuit, the optimization of synchronous rectification timing and dead-time, the thick-film hybrid integration process, and heat dissipation design. Through simulations and prototype experiments, it verifies and demonstrates the advantages of GaN HEMTS and hybrid integrated circuits in high power density and high efficiency aspects.
  • loading
  • [1]
    Wang Yang. Quality control of thick film hybrid integrated circuit process design and manufacturing[J]. Journal of Physics: Conference Series, 2021, 2037: 012008. doi: 10.1088/1742-6596/2037/1/012008
    [2]
    王浩. 厚膜混合集成电路封装互连材料和工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2014

    Wang Hao. Interconnect materials and processes for packaging thick film HIC[D]. Harbin: Harbin Institute of Technology, 2014
    [3]
    Lidow A, d Rooij M, Strydom J, et al. GaN transistors for efficient power conversion[M]. 3rd ed. Hoboken: John Wiley & Sons Ltd, 2020.
    [4]
    Nguyen-Van Q, Pham-Nguyen L, Han H D, et al. Efficient GaN-based hybrid DC-DC converter with simple and low-cost bootstrap gate drivers for LED lighting applications[J]. AEU - International Journal of Electronics and Communications, 2022, 155: 154330. doi: 10.1016/j.aeue.2022.154330
    [5]
    Rodríguez-Benítez O M, Ponce-Silva M, Aquí-Tapia J A, et al. Comparative performance and assessment study of a current-fed DC-DC resonant converter combining Si, SiC, and GaN-based power semiconductor devices[J]. Electronics, 2020, 9: 1982. doi: 10.3390/electronics9111982
    [6]
    佟强, 刘贺, 曲璐. 基于氮化镓的反激同步整流DC/DC变换器设计[J]. 电源学报, 2024, 22(2):81-89

    Tong Qiang, Liu He, Qu Lu. Design of synchronous rectifier flyback DC/DC converter based on GaN[J]. Journal of Power Supply, 2024, 22(2): 81-89
    [7]
    程哲. 第三代半导体材料及器件中的热科学和工程问题[J]. 物理学报, 2021, 70:236502

    Cheng Zhe. Thermal science and engineering in third-generation semiconductor materials and devices[J]. Acta Physica Sinica, 2021, 70: 236502
    [8]
    张宗烽. 先进封装系统中互连结构建模与GaN HEMT热分析方法研究[D]. 杭州: 杭州电子科技大学, 2023

    Zhang Zongfeng. Research on interconnect structure modeling and GaN HEMT thermal analysis methods in advanced packaging systems[D]. Hangzhou: Hangzhou Dianzi University, 2023
    [9]
    赵正平. GaN高频开关电力电子学的新进展[J]. 半导体技术, 2016, 41(1):1-9

    Zhao Zhengping. New advances in GaN high frequency switch power electronics[J]. Semiconductor Technology, 2016, 41(1): 1-9
    [10]
    Li Xiaobin, Ma Hongbo, Yi Junhong, et al. A comparative study of GaN HEMT and Si MOSFET-based active clamp forward converters[J]. Energies, 2020, 13: 4160. doi: 10.3390/en13164160
    [11]
    崔梅婷. GaN器件的特性及应用研究[D]. 北京: 北京交通大学, 2015

    Cui Meiting. Research on characteristics and applications of GaN device[D]. Beijing: Beijing Jiaotong University, 2015
    [12]
    Ghavidel Jalise M, Allahyari H, Shoaei A, et al. A self-driven synchronous rectification wide-range ZVS single-switch forward converter controlled using the variable inductance[J]. IET Power Electronics, 2023, 16(2): 320-332. doi: 10.1049/pel2.12386
    [13]
    王瑞东. 正激式有源箝位电压模开关电源的研究[D]. 西安: 西安电子科技大学, 2021

    Wang Ruidong. Research on forward active clamping voltage mode switching power supply[D]. Xi’an: Xidian University, 2021
    [14]
    陈伟, 李俊. 电源散热设计在高功率DC-DC变换器中的应用[J]. 电源学报, 2021, 19(4):52-60

    Chen Wei, Li Jun. Application of power dissipation design in high-power DC-DC converters[J]. Journal of Power Supply, 2021, 19(4): 52-60
    [15]
    Kim N, Han C. Thermal analysis and design of a 75-W hybrid-type DC–DC converter for space applications[J]. Microelectronics Reliability, 2014, 54(8): 1555-1561. doi: 10.1016/j.microrel.2014.03.011
    [16]
    Kumar V, Garg H, Singh C, et al. Mathematical and simulation analysis of natural convection heat transfer for DC–DC converter[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(20): 4136-4146. doi: 10.1177/0954406220920318
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (590) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return