Volume 37 Issue 4
Mar.  2025
Turn off MathJax
Article Contents
Wang Liangping, Li Mo, Wang Sheng, et al. Using Rayleigh scattering method to diagnose the airflow field of Z-pinch gas-puff load[J]. High Power Laser and Particle Beams, 2025, 37: 045007. doi: 10.11884/HPLPB202537.240341
Citation: Wang Liangping, Li Mo, Wang Sheng, et al. Using Rayleigh scattering method to diagnose the airflow field of Z-pinch gas-puff load[J]. High Power Laser and Particle Beams, 2025, 37: 045007. doi: 10.11884/HPLPB202537.240341

Using Rayleigh scattering method to diagnose the airflow field of Z-pinch gas-puff load

doi: 10.11884/HPLPB202537.240341
  • Received Date: 2024-09-24
  • Accepted Date: 2025-03-28
  • Rev Recd Date: 2025-03-28
  • Available Online: 2025-04-01
  • Publish Date: 2025-04-15
  • The gas-puff load is widely used in the Z-pinch researches because of its simple installation and excellent performance. The initial distribution of the gas-flow mass of the puff load is the most important parameter for optimizing the nozzle size structure, improving the implosion dynamics process, and finally improving the X-ray radiation yield. In this paper, the feasibility of using Rayleigh scattering to diagnose the airflow field of a gas-puff is introduced. The time-resolved images of the airflow filed have been obtained. The images show that the gas flowing from the nozzle forms a hollow shell with lower density within the length 1 cm and the flow expands in radical direction like a horn. The experimental images are compared with the calculation results using the ballistic-gas-flow model, and it is found that the model can well illustrate the flow field if the parameters are selected properly. The density of the airflow deduced from the Rayleigh scattering images is 3−4 orders of magnitude higher than the calculated results by ballistic transport model. The reason is that clusters are formed when the airflow field is in low temperature and low density, and they can greatly increase the Rayleigh scattering effect of gas flow. Nevertheless, the relative intensity distribution of the gas flow field can be obtained by the Rayleigh scattering with distinct details.
  • loading
  • [1]
    Ryutov D D, Derzon M S, Matzen M K. The physics of fast Z pinches[J]. Reviews of Modern Physics, 2000, 72(1): 167-223.
    [2]
    Spielman R B, de Groot J S. Z pinches—A historical view[J]. Laser and Particle Beams, 2001, 19(4): 509-525.
    [3]
    阳庆国, 黄显宾, 刘冬兵, 等. 聚龙一号装置上首次铝套筒Z箍缩X射线背光照相实验[J]. 强激光与粒子束, 2016, 28:040101 doi: 10.11884/HPLPB201628.120101

    Yang Qingguo, Huang Xianbin, Liu Dongbing, et al. The first X-ray backlighting of Z-pinched aluminium liner experiment on PTS facility[J]. High Power Laser and Particle Beams, 2016, 28: 040101 doi: 10.11884/HPLPB201628.120101
    [4]
    Ware K D, Bell D E, Gullickson R L, et al. Evolving approaches to pulsed X-ray sources[J]. IEEE Transactions on Plasma Science, 2002, 30(5): 1733-1741.
    [5]
    Thornhill J W, Whitney K G, Davis J, et al. Investigation of K-shell emission from moderate-Z, low-η (-velocity), Z-pinch implosions[J]. Journal of Applied Physics, 1996, 80(2): 710-718.
    [6]
    Giuliani J L, Commisso R J. A review of the gas-puff Z-pinch as an X-ray and neutron source[J]. IEEE Transactions on Plasma Science, 2015, 43(8): 2385-2453.
    [7]
    Jennings C A, Ampleford D J, Lamppa D C, et al. Computational modeling of Krypton gas puffs with tailored mass density profiles on Z[J]. Physics of Plasmas, 2015, 22: 056316. doi: 10.1063/1.4921154
    [8]
    Harvey-Thompson A J, Jennings C A, Jones B, et al. Investigating the effect of adding an on-axis jet to Ar gas puff Z pinches on Z[J]. Physics of Plasmas, 2016, 23: 101203.
    [9]
    Coverdale C A, Deeney C, Velikovich A L, et al. Neutron production and implosion characteristics of a deuterium gas-puff Z pinch[J]. Physics of Plasmas, 2007, 14: 022706.
    [10]
    Coverdale C A, Deeney C, Velikovich A L, et al. Deuterium gas-puff Z-pinch implosions on the Z accelerator[J]. Physics of Plasmas, 2007, 14: 056309.
    [11]
    邹晓兵, 王新新, 罗承沐, 等. 喷气Z箍缩负载的质量线密度确定[J]. 强激光与粒子束, 2002, 14(3):473-475

    Zou Xiaobin, Wang Xinxin, Luo Chengmu, et al. Determination of line mass density for the gas load of a gas puff Z-pinch[J]. High Power Laser and Particle Beams, 2002, 14(3): 473-475
    [12]
    Smith III R S, Doggett W O, Roth I, et al. Supersonic gas shell for puff pinch experiments[J]. Applied Physics Letters, 1982, 41(6): 572-573.
    [13]
    Qi Niansheng, Failor B H, Banister J, et al. Two-dimensional gas density and velocity distributions of a 12-cm-diameter, triple-nozzle argon Z-pinch load[J]. IEEE Transactions on Plasma Science, 2005, 33(2): 752-762.
    [14]
    Jackson S L, Weber B V, Mosher D, et al. A comparison of planar, laser-induced fluorescence, and high-sensitivity interferometry techniques for gas-puff nozzle density measurements[J]. Review of Scientific Instruments, 2008, 79: 10E717. doi: 10.1063/1.2979871
    [15]
    王晟, 邵珺, 李国华, 等. 基于检测分子瑞利散射光多普勒频移的流场多点速度测量[J]. 中国激光, 2015, 42:1015002

    Wang Sheng, Shao Jun, Li Guohua, et al. Multi-point velocity measurement of gas flow field based on detecting the Doppler frequency shift of molecular Rayleigh scattering[J]. Chinese Journal of Lasers, 2015, 42: 1015002
    [16]
    刘晶儒, 胡志云, 张振荣, 等. 激光光谱技术在燃烧流场诊断中的应用[J]. 光学 精密工程, 2011, 19(2):284-296

    Liu Jingru, Hu Zhiyun, Zhang Zhenrong, et al. Laser spectroscopy applied to combustion diagnostics[J]. Optics and Precision Engineering, 2011, 19(2): 284-296
    [17]
    张振荣, 李国华, 叶景峰, 等. 利用拉曼散射法在线测量航空发动机燃烧场主要组分[J]. 现代应用物理, 2016, 7:040303

    Zhang Zhenrong, Li Guohua, Ye Jingfeng, et al. The online measuring of the major species in aeroengine combustor using Raman scattering method[J]. Modern Applied Physics, 2016, 7: 040303
    [18]
    王秉超, 李良德, 马文琦, 等. 光学[M]. 长春: 吉林大学出版社, 1991

    Wang Bingchao, Li Liangde, Ma Wenqi, et al. Optics[M]. Changchun: Jilin University Press, 1991
    [19]
    刘沙, 王勇, 袁瑞峰, 等. 统一气体动理学方法研究进展[J]. 气体物理, 2019, 4(4):1-13

    Liu Sha, Wang Yong, Yuan Ruifeng, et al. Advance in unified methods based on gas-kinetic theory[J]. Physics of Gases, 2019, 4(4): 1-13
    [20]
    代连福, 刘振宇, 吴慧英. 基于UGKS的过渡区方柱绕流数值研究[J]. 工程热物理学报, 2021, 42(4):953-958

    Dai Lianfu, Liu Zhenyu, Wu huiying. Numerical simulation of gas flow over square cylinder in transition regime based on UGKS[J]. Journal of Engineering Thermophysics, 2021, 42(4): 953-958
    [21]
    Mosher D, Weber B V, Moosman B, et al. Measurement and analysis of gas-puff density distributions for plasma radiation source z pinches[J]. Laser and Particle Beams, 2001, 19(4): 579-595. doi: 10.1017/S026303460119405X
    [22]
    刘红杰. 超强超短脉冲激光与团簇相互作用实验研究[D]. 北京: 中国工程物理研究院, 2007

    Liu Hongjie. Ultra-short ultra-intense laser cluster interaction[D]. Beijing: China Academy of Engineering Physics, 2007
    [23]
    周光坰, 严宗毅, 许世雄, 等. 流体力学[M]. 2版. 北京: 高等教育出版社, 2000

    Zhou Guangjiong, Yan Zongyi, Xu Shixiong, et al. Fluid mechanics[M]. 2nd ed. Beijing: Higher Education Press, 2000
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views (348) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return