Volume 37 Issue 4
Mar.  2025
Turn off MathJax
Article Contents
Dong Ziqiang, Pei Shilun, Zhang Tong, et al. Simulation design of an S-band 6 MeV compact microtron[J]. High Power Laser and Particle Beams, 2025, 37: 044006. doi: 10.11884/HPLPB202537.240343
Citation: Dong Ziqiang, Pei Shilun, Zhang Tong, et al. Simulation design of an S-band 6 MeV compact microtron[J]. High Power Laser and Particle Beams, 2025, 37: 044006. doi: 10.11884/HPLPB202537.240343

Simulation design of an S-band 6 MeV compact microtron

doi: 10.11884/HPLPB202537.240343
  • Received Date: 2024-09-25
  • Accepted Date: 2025-02-15
  • Rev Recd Date: 2025-02-15
  • Available Online: 2025-03-27
  • Publish Date: 2025-04-15
  • The Anhui Laboratory of Advanced Photon Science and Technology has beer developing a 6 MeV compact microtron, which can be used to drive compact microfocus X-ray sources or compact terahertz free electron lasers. To achieve a more compact accelerator design, the CST Electromagnetic suite was used to design and calculate the second type RF cavity of the microtron. The frequency of the RF cavity is 2998.2 MHz, and an accelerating voltage of over 1 MV can be obtained in the RF cavity gap. The electron energy gain can reach about 0.9 MeV per pass. At the same time, CST Particle Studio was used to simulate the electron generation and acceleration process in the ultra-high frequency cavity with thermionic cathode. The effects of microwave power amplitude, magnetic field strength, cathode emission position, and beam channel on the microtron were studied. The coupler design considering beam loading was also completed, and the operating parameters of the RF cavity during steady-state operation were obtained. The simulation results show that when the beam loading reaches steady state, with a cathode emission capacity of 20 A/cm2, a current of 24 mA can be induced, a beam energy of 6 MeV, an energy spread of 0.64%, and a transverse RMS size of 3.3 mm × 1.8 mm can be obtained.
  • loading
  • [1]
    陈佳洱. 加速器物理基础[M]. 北京: 北京大学出版社, 2012

    Chen Jiaer. Fundamentals of accelerator physics[M]. Beijing: Peking University Press, 2012
    [2]
    Tsipenyuk Y M. Microtron: development and applications[M]. London: CRC Press, 2001.
    [3]
    Borisov M, Ermakov A, Khankin V, et al. Racetrack microtron—pushing the limits[J]. Symmetry, 2021, 13: 2244. doi: 10.3390/sym13122244
    [4]
    Kazakevich G M, Pavlov V M, Kuznetsov G I, et al. Internal injection for a microtron driving a terahertz free electron laser[J]. Journal of Applied Physics, 2007, 102: 034507.
    [5]
    Kazakevitch G M, Jeong Y U, Lee B C, et al. Variable-energy microtron-injector for a compact wide-band FIR free electron laser[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 507(1/2): 146-149.
    [6]
    Kazakevich G M, Pavlov V M, Kuznetsov G I, et al. Optimization of the injection system for microtron-based terahertz FEL[C]//Proceedings of the 28th International Free Electron Laser Conference (FEL 2006). 2006: 403-406.
    [7]
    Abrams R J, Cummings M A C, Johnson R P, et al. Compact, microtron-based gamma source[C]//7th International Particle Accelerator Conference. 2016: 3522-3524.
    [8]
    Sviatoslavsky I N. The microtron[M]. Kapit︠s︡a S P, Melekhin V N, trans. London: Harwood Academic Publishers, 1978.
    [9]
    Lidbjörk P. Microtrons[C]//CAS - CERN accelerator school: 5th General Accelerator Physics Course. 1994: 971-981.
    [10]
    Kazakevich G M, Pavlov V M, Jeong Y U, et al. Magnetron-driven microtron injector of a terahertz free electron laser[J]. Physical Review Special Topics - Accelerators and Beams, 2009, 12: 040701.
    [11]
    Abrams R J. I. Final report for DOE SBIR phase I project DE-SC0013795 microtron-based compact, portable gamma-ray source[R]. Batavia: Muons Inc. , 2017.
    [12]
    Bashmakov Y A, Dyubkov V S, Lozeev Y Y. Numerical simulation of longitudinal and transversal electron dynamics in classical microtron[J]. Journal of Physics: Conference Series, 2019, 1238: 012071. doi: 10.1088/1742-6596/1238/1/012071
    [13]
    Bashmakov Y A, Dyubkov V S, Lozeev Y Y. Numerical simulation of electrons dynamics in a microtron on 6–10 MeV[J]. Journal of Physics: Conference Series, 2017, 941: 012090. doi: 10.1088/1742-6596/941/1/012090
    [14]
    Yamada H, Hasegawa D, Yamada T, et al. Tabletop synchrotron light source[J]. Comprehensive Biomedical Physics, 2014, 8: 43-65.
    [15]
    Hasegawa D, Yamada H, Kleev A I, et al. The portable synchrotron MIRRORCLE-6X[J]. AIP Conference Proceedings, 2004, 716(1): 116-119.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article views (528) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return