Volume 37 Issue 1
Dec.  2025
Turn off MathJax
Article Contents
Huang Ruiqi, Liu Jibin, Zheng Liming, et al. Design of a broadband absorptive electromagnetic pulse protection device[J]. High Power Laser and Particle Beams, 2025, 37: 013005. doi: 10.11884/HPLPB202537.250006
Citation: Huang Ruiqi, Liu Jibin, Zheng Liming, et al. Design of a broadband absorptive electromagnetic pulse protection device[J]. High Power Laser and Particle Beams, 2025, 37: 013005. doi: 10.11884/HPLPB202537.250006

Design of a broadband absorptive electromagnetic pulse protection device

doi: 10.11884/HPLPB202537.250006
  • Received Date: 2024-11-26
  • Accepted Date: 2025-01-07
  • Rev Recd Date: 2025-01-07
  • Available Online: 2025-01-08
  • Publish Date: 2025-12-13
  • In complex electromagnetic countermeasure environments, it is necessary to take electromagnetic protection measures for the radio frequency front-end of electronic information equipment to resist strong electromagnetic interference and even damage. In response to the problem that existing protective devices reflect strong interference signals exceeding the threshold during operation, which can easily cause secondary electromagnetic threats, we propose a design for a broadband absorptive electromagnetic pulse protection device. By introducing a microstrip line matching stub in the main protection path, the electromagnetic pulse signal is isolated from the output port and transmitted to the matching load for broadband absorption. Within the frequency range of 0.5 GHz to 1.5 GHz (relative bandwidth > 90%), the device achieves good performance with insertion loss less than 1 dB for low-power signals, electromagnetic pulse signal protection isolation greater than 10 dB, and input port return loss greater than 10 dB.
  • loading
  • [1]
    Eleftheriades G V. Electronics: protecting the weak from the strong[J]. Nature, 2014, 505(7484): 490-491. doi: 10.1038/nature12852
    [2]
    Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al. An ultra-broadband energy selective surface design method: from filter circuits to metamaterials[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(7): 5865-5873. doi: 10.1109/TAP.2023.3276447
    [3]
    Tian Tao, Huang Xianjun, Xu Yanlin, et al. A wideband energy selective surface with quasi-elliptic bandpass response and high-power microwave shielding[J]. IEEE Transactions on Electromagnetic Compatibility, 2024, 66(1): 224-233. doi: 10.1109/TEMC.2023.3325438
    [4]
    Zhou Lin, Shen Zhongxiang. 3-D absorptive energy-selective structures[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5664-5672. doi: 10.1109/TAP.2021.3061097
    [5]
    Zhang Jihong, Hu Ning, Wu Zhaofeng, et al. Adaptive high-impedance surface for prevention of waveguide’s high-intensity wave[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7679-7687. doi: 10.1109/TAP.2021.3070052
    [6]
    Huang Ruiqi, Liu Jibin, Liu Chenxi, et al. A broadband adaptive waveguide high-power microwave protector[J]. IEEE Microwave and Wireless Technology Letters, 2023, 33(1): 15-18. doi: 10.1109/LMWC.2022.3193457
    [7]
    Huang Ruiqi, Liu Jibin, Liu Chenxi, et al. Self-switchable broadband waveguide protector against high power microwave[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(1): 355-359. doi: 10.1109/TEMC.2022.3201577
    [8]
    Zha Song, Qu Zhuang, Zhang Jihong, et al. A gain-reconfigurable reflector antenna with surface-mounted field-induced artificial magnetic conductor for adaptive HIRF prevention[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(9): 7252-7260. doi: 10.1109/TAP.2024.3434371
    [9]
    Wang Meini, Tang Min, Zhang Haochi, et al. Energy selective antenna: concept, design, and experiment[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(2): 539-545. doi: 10.1109/TEMC.2023.3237689
    [10]
    Zhao Rikang, Kang Xuanwu, Zheng Yingkui, et al. High-power GaN SBD limiter for sub-6G with fast response and recovery[J]. IEEE Microwave and Wireless Technology Letters, 2024, 34(1): 57-60. doi: 10.1109/LMWT.2023.3332680
    [11]
    Gao Qian, Fordham M E, Cui Han, et al. A compact circuit model for frequency-selective limiters with strong field nonuniformity[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(12): 5124-5134. doi: 10.1109/TMTT.2023.3285449
    [12]
    Yang Wei, Abu Khater M, Naglich E J, et al. Frequency-selective limiters using triple-mode filters[J]. IEEE Access, 2020, 8: 114854-114863.
    [13]
    Phudpong P, Hunter I C. Frequency-selective limiters using nonlinear bandstop filters[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(1): 157-164. doi: 10.1109/TMTT.2008.2009078
    [14]
    Collado C, Hueltes A, Rocas E, et al. Absorptive limiter for frequency-selective circuits[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(6): 415-417. doi: 10.1109/LMWC.2014.2313583
    [15]
    Hueltes A, Rocas E, Collado C, et al. Three-port frequency-selective absorptive limiter[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(5): 479-481. doi: 10.1109/LMWC.2017.2690858
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article views (502) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return